
Logging Data
During API Extensions development, it is helpful to use the available logging tools to examine the data your functions
are interacting with. The process is simple: expose the places in your code where you want to log data about a
particular object or result, and then view the logged data through the Action Logs available in Dev Center. After you are
done with development, make sure to go back into your code to remove or minimize the amount of logging from your
application to ward off performance issues.

Log Data During Development
To log data during development and debugging, use the console module available in Node.js and configure the Action
Management JSON Editor to allow low priority logs to display in Dev Center:

1. Open an action file in the assets/src directory and log data to the console using console.log or

console.info . A great use case for logging is to view what data the context object provides different actions,

as shown in the following two examples (which include an embedded action and an http action), but you can log

just about any data you want.

module.exports = function(context, callback) {
 console.info(context);
 console.info(context.get.cart());
 console.info(context.get.cartItem());
 console.info(context.apiContext);

 // Rest of code

 callback();
};

assets/src/domains/commerce.catalog.storefront.shipping/
http.commerce.catalog.storefront.shipping.requestRates.after.js

module.exports = function(context, callback) {
 console.info(context);
 console.info(context.request.headers);
 console.info(context.request.params);
 console.info(context.request.href);
 console.info(context.response.body);

 // Rest of code

 callback();
};

2. Save the file.

3. In Admin, go to System > Customization > API Extensions to open the Action Management JSON Editor.

4. Set the defaultLogLevel to info , which allows low-priority logs to display in Dev Center.

5. Run grunt in your project directory to upload your assets with the new logging code.

6. In your sandbox, interact with your storefront so that the relevant action runs its custom function. For the

https://nodejs.org/api/console.html
http://docs.kibocommerce.com/help/action-management-json-editor

preceding examples, you would add an item to the cart or proceed through the checkout process until the

shipping rate information displays.

7. In Dev Center, go to Logs > Action Logs.

8. Select a tenant and click OK to view the logs for that tenant.

9. Identify the logs generated by your function and click them to view details. A lot of the data relevant to

applications is formatted as JSON. Kibo recommends you copy this data into an online JSON formatter for easier

viewing.

Log Data on a Production Application
While logging data is useful during development, when your application is ready for production, you should make sure
to:

1. Remove or comment out console statements from your code.

2. In Admin, go to System > Customization > API Extensions to open the Action Management JSON Editor. Set the

defaultLogLevel to error , which allows only high-priority logs to display in Dev Center.

Forgetting to set the log level to error results in performance penalties because low-priority logs generate

data more frequently, unnecessarily taxing the system.

http://docs.kibocommerce.com/help/action-management-json-editor

