
Search Settings API Overview
Storefront search capabilities within the Kibo Composable Commerce Platform (KCCP) are
supported by Solr 8 and an extensive set of configurable options that can be customized for the
implementation. This guide explains several of the concepts about relevancy, filtering, that should
be understood before configuring search strategies.

In the the catalog/admin resource, catalog/admin/schemaDefinition contains the API calls to
manage the schema and catalog/admin/search contains the API calls to configure individual
search settings. In the catalog/storefront resource, use catalog/storefront/productsearch to make
the actual Site Search and Visual Search calls. The instructions for configuring product search
settings via API are also available in the Catalog guides.

Adjustable Search Settings

The core search settings that can be adjusted are listed here, though not all are supported by
every type of search. See the appropriate catalog/admin/search resource to see which of the
below settings are supported by each kind of search.

Search Setting Description

fieldWeights
The weighted relevancy settings that you want Kibo to use. Refer to
the Field Weights section below for more information about field
weights.

fieldValueBoosts and
customBoosts

The boost functions that you want Kibo to use. Refer to the Boosting
Fields section below for more information about boosting.

minimumMatchPercents

The minimum match (MM) percent is a percentage of the number of
search terms that must match or can be missing. Kibo's default MM
percent is 75%. Refer to the Minimum Match Percent section below
for more information about minimum match percents.

searchSynonymSettings

The search synonym settings that you want Kibo to use.

Search synonyms are synonyms to user search queries that you
want Kibo to match on. For example, if a user searches for blouse ,
you want Kibo to show all search results that would appear if a user
searched for shirt as well. In this example, blouse and shirt are
search synonyms. Refer to the Search Synonyms section below for
more information about search synonym settings.

How Solr Filters Attributes

When defining attributes in the product catalog, they are flagged to indicate whether they allow
filtering and sorting. These options enable attributes to be indexed in the search schema and used
as search terms, by filtering and sorting all catalog data based on the search terms for certain
attributes that the user submitted a query for. This provides the backbone of the Solr-based
search functionality, as it determines how the queries are processed in KCCP and Solr to return
search results for the user.

Different dynamic field patterns can be used for filtering and sorting actions, and are case-
sensitive.

https://apidocs.kibocommerce.com/?spec=catalog_admin#overview
https://apidocs.kibocommerce.com/?spec=catalog_storefront#overview
https://api-docs.kibocommerce.com/reference/catalog-admin-overview
http://docs.kibocommerce.com/#field-relevance
http://docs.kibocommerce.com/#boosting-fields
http://docs.kibocommerce.com/#minimum-match-percent
http://docs.kibocommerce.com/#search-synonyms

Type Action Definition

string Filter
<dynamicField name=”*_ss” type=”string” indexed=”true”
stored=”true” multiValued=”true” docValues=”true” />

string Sort
<dynamicField name=”*_s” type=”docstring” indexed=”true”
stored=”true” docValues=”true” />

boolean
Filter
and
Sort

<dynamicField name=”*_b” type=”boolean” indexed=”true”
stored=”true” docValues=”true” />

float/number Filter
<dynamicField name=”*_fs” type=”pfloat” indexed=”true”
stored=”true” multiValued=”true”/>

float/number Sort
<dynamicField name=”*_f” type=”pfloat” indexed=”true”
stored=”true” />

date Filter
<dynamicField name=”*_dts” type=”pdate” indexed=”true”
stored=”true” multiValued=”true” />

date Sort
<dynamicField name=”*_dt” type=”pdate” indexed=”true”
stored=”true” />

Filtering and sorting attributes uses the pattern __. For example, the string tenant~brand-name
would reference the following two fields:

Facet field: tenant_brand-name_ss
Single-value sort field: tenant_brand-name_s

By default, only attributes defined in the catalog and the indexed in the search schema can be
queried for as a search term. However, _txtin can be used to insert fields into the term search
without storing or indexing the field. Thus, it can be used in the below format to perform a search
for custom attributes as if it were a valid term.

Use Definition

all
<dynamicField name=”*_txtin” type=”string” indexed=”false” stored=”false”
multiValued=”true”/>

To perform searches with custom attributes, use the pattern __txtin such as in the example
tenant~brand-name_txtin.

Example

This example walks through a full search case to illustrate how these patterns are used to
generate the final query for Solr. The example schema defines a “brand name” field to be used as
both a default text search field and a ngram field for the product suggest function. The schema
object would look like this:

Field Definition

tenant~brand-name default

tenant~brand-name ngram

Thus, the Solr schema would include the following entries that define the brand name field.

<field name="tenant_brand-name_default" type="text_lang_en" indexed="true" stored="false"/>

<field name="tenant_brand-name_ngram" type="edgytext" indexed="true" stored="false"/>
<copyField source="tenant_brand-name_txtin" dest="tenant_brand-name_default"/>
<copyField source="tenant_brand-name_txtin" dest="tenant_brand-name_ngram"/>

If a site search was performed for “mystic,” then the searchSettings object would be used to
determine what fields and weights should be used in the Solr query. In this example, the following
weights are defined for the fields:

Field Definition Weight

productName default 7

tenant~brand default 5

So, the resulting query would be q=mystic&qf=productname_default^7 tenant_brand-
name_default^5.

Field Relevance

Relevance determines how search results are ranked and displayed to the user, and can be
customized at the attribute level to prioritize certain terms by adjusting the “weight” of each
attribute. Results that match the search terms with higher total weights will be ranked higher
(towards the top of the results) when displayed on the storefront than other results with lower
total weights. For instance, if a customer searches for a blue shirt in a particular brand and the
brand attribute is weighted higher than the color attribute, then an item that matches the brand
will be more relevant and thus ranked higher in the search results than an item that is only blue.

Weighting Fields

Each searchable field in the schema can be weighted with a different value to prioritize certain
fields when checking for search term matches. If a search was being made based on brand and
product name, and the product name was weighted higher, then items that match the queried
product name will be listed higher in the search results than items that only match the queried
brand. Items that match both the queried product name and brand will be ranked highest.

The fieldWeights array is a list of objects, each entry of which identifies a searchFieldName and
the appropriate weighting values either as a simple weight on the search term or as a phrase. The
basic weight value raises the relevancy score of a search result that includes this particular term,
while phraseWeight raises the relevancy score of a search result that has the exact search phrase
with all terms next to each other. Note that the search field being weighted must be indexed in
the schema.

For example, the below sample would set the field for the brand attribute to a weighting of 10.
These weights are relative to the weights of the other results – KCCP does not enforce a strict
scale such as 1-10. This snippet would be part of the site search settings object included in a
larger POST or PUT call to the Search Settings API as detailed in that guide.

"siteSearchSettings": {
 "fieldWeights": [
 {
 "phraseWeight": 0,
 "searchFieldName": "tenant_brand_desc_lenient",
 "weight": 10
 },

Boosting Fields

Further adjustments can be made by boosting certain values within each attribute. Boosting
further fine-tunes weights and relevancy by adjusting the weight of a result based on the
attribute’s value relative to other possible values of the attribute, allowing certain options to be
prioritized within the same product. For instance, boosting “blue” above “red” for the color

attribute would allow blue shirts to be ranked higher in the search results than red shirts of the
same brand and design, if the user did not specify color in their query.

Boost particular values of attributes to raise their search result ranking and prioritize those values
in relation to each other, instead of changing the actual weight of the whole field which does not
differentiate between values. For instance, an attribute for color can have a number of possible
values that describe the product’s different color options. These boosting options can be applied
as the fieldValueBoost object when configuring site search settings, product suggest settings, and
listing settings.

Parameter Type Description

boostType string The type of boost being applied.

fields array
A list of the fields that boosting is being applied to. Limit of 20
entries.

fieldName string
Contained in each entry of the fields array. The name of the field,
validated against the catalog attributes.

valueExpressions array
Contained in each entry of the fields array. A list of objects that
define the expressions being used to set the boosts of this field
relative to its possible values. Limit of 20 entries.

value string
Contained in each entry of the valueExpressions array. The value
of this field.

boost integer
Contained in each entry of the valueExpressions array. The actual
amount by which to boost the weight of this value on the
attribute. Must be greater than or equal to 0.

operator string
Contained in each entry of the valueExpressions array. The
operator by which to compare the value of the field against the
search term. The options are: gt, gte, lt, lte, eq, neq.

While the boost data is also documented in the Search Settings API guide, this snippet provides a
quick look at what this data looks like in those requests. This is an example that would boost the
“Mystic” brand above the “Mundane” brand.

{
 "boostType": "simple",
 "fields": [
 {
 "fieldName": "tenant~brand",
 "valueExpressions": [
 {
 "value": "mystic",
 "boost": 20,
 "operator": "eq"
 },
 {
 "value": "mundane",
 "boost": 10,
 "operator": "eq"
 }
]
 }
}

Minimum Match Percent

The minimum match (MM) percent indicates the percentage of terms in a search query that must
be contained in the search results. In order to calculate how many terms are matched, Kibo

multiplies the MM value by the number of terms in the search query and either rounds down or up
depending on the MM value. The default value is 75%.

You can specify a minimum match percent using the minimumMatchPercent field.

If you have search synonyms that match on a user's search query, Kibo ignores the
minimumMatchPercent value and uses a minimum match of 100% instead. Refer to Minimum
Match and Synonyms for more information.

Valid values for the MM percent are integers between 0-100, including negative integers. A
positive integer indicates how many terms are required to match, rounded down. A negative
integer indicates how many terms can be missing, rounded up.

The higher the MM percent the more narrow the product results Kibo returns.

Refer to the following table for some example outcomes of different MM percents:

MM Percent Number of Search Terms Outcome

75% 5
3 terms must match

(5 * 0.75 = 3.75, rounded down to 3)

50% 5
2 terms must match

(5 * 0.5 = 2.5, rounded down to 2)

25% 5
1 term must match

(5 * 0.25 = 1.25, rounded down to 1)

-25% 5

4 terms must match
(1 term can be missing)

(5 * 0.75 = 3.75, rounded up to 4)

-50% 5

3 terms must match
(2 terms can be missing)

(5 * 0.5 = 2.5, rounded up to 3)

Search Synonyms

You can add search synonyms to Kibo's search settings to expand Kibo's search capabilities.
Search synonyms are synonyms to user search queries to which Kibo expands the search results.
For example, a user may search for boots, but you want the search results to also include results
for shoes, slippers, and pumps. You can use search synonyms to accomplish this.

Enable Search Synonym Settings

To enable the search synonyms settings, in the search settings set expandSynonyms to True .

Synonym Definitions

Synonym definitions are individual definitions of synonyms. Synonym definitions are scoped to a
particular tenant, site, and locale code.

A synonym definition can include either a key and a list of synonyms, or just a list of synonyms.

http://docs.kibocommerce.com/#minimum-match-and-synonyms

Refer to Synonym Expansion Types for more information about using a key.

Multiple synonym definitions for a site are placed in a site's synonym definition collection. Kibo
automatically adds any synonym definitions you create to the applicable synonym definition
collection. Refer to Synonym Definition Collections for more information.

Synonym Definition Operations

You can perform the following operations on synonym definitions:

AddSynonymDefinition
DeleteSynonymDefinition
GetSynonymDefinition
GetSynonymDefinitions
UpdateSynonymDefinition

Synonym Definition Body

A synonym definition has the following body:

{
 "key": "string",
 "synonymId": "int",
 "synonyms": "string"
}

Synonym Definition Collections

Synonym definition collections are collections of multiple synonym definitions. Each site can have
one synonym definition collection. Kibo automatically adds any synonym definitions you create to
the applicable synonym definition collection.

Synonym Definition Collection Operations

You can perform the following operations on synonym definitions:

GetSynonymDefinitionCollection
UpdateSynonymDefinitionCollection

Synonym Definition Collection Body

A synonym definition collection has the following body:

{
 "localeCode": "string",
 "siteId": "int",
 "synonymDefinitions": [
 {
 "key": "string",
 "synonymId": "int",
 "synonyms": "string"
 }
],
 "tenantId": "int"
}

Synonym Expansion Types

There are two search synonym expansion types: one way and two way.

One Way

The one way expansion type includes a key and a set of synonyms to which Kibo expands the
search results. This is a one way expansion; Kibo does not expand the search results to the key or

http://docs.kibocommerce.com/#synonym-expansion-types
http://docs.kibocommerce.com/#synonym-definition-collections
https://apidocs.kibocommerce.com/?spec=catalog_admin#post-/commerce/catalog/admin/search/synonyms
https://apidocs.kibocommerce.com/?spec=catalog_admin#delete-/commerce/catalog/admin/search/synonyms/-synonymId-
https://apidocs.kibocommerce.com/?spec=catalog_admin#get-/commerce/catalog/admin/search/synonyms/-synonymId-
https://apidocs.kibocommerce.com/?spec=catalog_admin#get-/commerce/catalog/admin/search/synonyms
https://apidocs.kibocommerce.com/?spec=catalog_admin#put-/commerce/catalog/admin/search/synonyms/-synonymId-
https://apidocs.kibocommerce.com/?spec=catalog_admin#get-/commerce/catalog/admin/search/synonym-definitions/-localeCode-
https://apidocs.kibocommerce.com/?spec=catalog_admin#post-/commerce/catalog/admin/search/synonym-definitions/-localeCode-

any other listed synonyms.

You are not required to provide a key. Do not provide a key for two way expansion.

{
 "localeCode": "en-us",
 "siteId": "22327",
 "synonymDefinitions": [
 {
 "key": "blouse",
 "synonymId": "1",
 "synonyms": [
 "shirt", "top", "T-shirt"
]
 }
],
 "tenantId": "18263"
}

In the above example, if a user searches for blouse, then Kibo expands the search results to
include the results for shirt, top, and T-shirt. However, if a user searches for top, Kibo does not
expand the search results to include the results for blouse, shirt, or T-shirt.

Two Way

The Two Way expansion type does not include a key, but instead only contains a list of synonyms
to which Kibo expands. This is a two way expansion; for any listed synonym, Kibo expands the
search results to all other listed synonyms.

For example, you specify the following:

{
 "localeCode": "en-us",
 "siteId": "22327",
 "synonymDefinitions": [
 {
 "synonymId": "1",
 "synonyms": [
 "shirt", "top", "T-shirt", "sweater", "blouse", "pullover"
]
 }
],
 "tenantId": "18263"
}

In the above example, if a user searches for top, then Kibo expands the search results to include
the results for shirt, T-shirt, sweater, blouse, and pullover.

Kibo only matches multi-word search terms if they are contained within quotes in the search
query. If a multi-word search term is not contained within quotes in the search query, Kibo uses
each word in the search to find synonyms. For example, if a shopper searches for blue shoes
without quotes, Kibo expands both blue and shoes to any applicable synonyms.

Boosting Synonyms

Kibo also allows you to set boost values for synonyms using the searchSynonymSettings . Boost
values are separated into the following two different parts.

Main part: The terms that the user enters in their search query. Use the mainPartBoost
field to set boost values for the main part.
Synonym part: The synonym terms to which Kibo expands the search query. Use the
synonymPartBoost field to set boost values for the synonym part.

If you set the mainPartBoost higher than the synonymPartBoost , then Kibo displays the search
results that match on a user's search terms higher in the search results. If you set the
synonymPartBoost higher, then Kibo displays the search results that match on an expanded

synonym higher in the search results.

For example, you specify the following:

"searchSynonymSettings": {
 "mainPartBoost": 1.2,
 "synonymPartBoost": 1.1
}

In the above example, any results that match the user's search query terms appear higher in the
search results list than any results that match an expanded synonym.

The following are typical boost values:

mainPartBoost : 1.2
synonymPartBoost : 1.1

Another multiplier of mainPartBoost and synonymPartBoost that can be applied is phraseBoost.
PhraseBoost can further raise the relevancy of results in which the phrase is found with both words
next to each other, and is set to a default of 1.0 that will still score those results higher. The
phraseBoost value can be changed when needed, allowing more tuning if the search results are
not as expected based on the data distribution.

Match On Any Term

The setting matchOnAnyTerm can be set to allow for a looser query. As detailed below,
minimum match percents do not work with synonym expansion which means that every term
must exist in a document for it to be displayed as a search result. However, matchOnAnyTerm can
reduce this requirement when synonyms are in use. With matchOnAnyTerm, a document can be
returned by the search as long as at least one term exists within it.

For example:

Search Phrase: "bbq grill"
Synonym: "bbq" = "propane"
MatchOnAnyTerm: Set to either true (enabled) or false (disabled, by default)

If matchOnAnyTerm is not enabled, then only documents that contain both ("bbq" and "grill") or
("propane" and "grill") are returned. When matchOnAnyTerm is enabled, then any document that
contains ("bbq" or "grill" or "propane") will also be returned. Relevancy is still taken into account,
so the documents that contain more of the terms or the full phrase will be ranked higher.

Minimum Match and Synonyms

When you use both a minimum match percent and a synonym definition list, Kibo uses a minimum
match of 100% for the search query and its synonyms.

Refer to the following table for some examples of this behavior:

Search
Query

Synonym Definition List Expanded Search

Gucci
shoes

"synonymDefinitions": [
 {
 "key": "shoes",
 "synonymId": "1",
 "synonyms": [
 "boots", "booties", "pumps", "heels", "sandals",

"sneakers", "flats", "loafers", "oxfords"
]
 }
]

Gucci shoes, Gucci boots,
Gucci booties, Gucci
pumps,
Gucci heels, Gucci
sandals, Gucci sneakers,
Gucci flats,
Gucci loafers, Gucci
oxfords

Red
Shoes

"synonymDefinitions": [
 {
 "key": "shoes",
 "synonymId": "1",
 "synonyms": [
 "boots", "booties", "pumps"
]
 },
 {
 "key": "red",
 "synonymId": "2",
 "synonyms": [
 "magenta", "ruby", "pink"
]
 }
]

Red shoes, red boots, red
booties, red pumps,
magenta shoes, magenta
boots, magenta booties,
magenta pumps,
ruby shoes, ruby boots,
ruby booties, ruby pumps,
pink shoes, pink boots,
pink booties, pink pumps

Search
Query

Synonym Definition List Expanded Search

If you do not have search synonyms that match on a user's search query, Kibo uses the
minimumMatchPercent value. Refer to Minimum Match Percent for more information.

Default Relevancy Weights

Kibo's search settings include the following default relevancy weights:

"siteKeywordRelevancy": {
 "productCodeWeight": 10,
 "nameWeight": 8,
 "descriptionWeight": 4,
 "keywordsWeight": 4,
 "attributesWeight": 1,
 "upcWeight": 2,
 "mpnWeight": 2,
 "categoryNamesWeight": 2
},
"sitePhraseRelevancy": {
 "nameWeight": 5,
 "descriptionWeight": 3,
 "attributeWeight": 1
}

Deep Paging

When you're paging through thousands or more of products using the Kibo API, Kibo recommends
using deep paging, which optimizes your retrieve requests. Traditional paged requests require
Kibo to create an internal queue of paged product results using a combination of pageSize and
startIndex , which requires a large amount of memory and subsequently degrades Kibo's
performance.

With deep paging, on your first request you do not specify a startIndex , and instead only specify
a pageSize and initialize the cursorMark parameter using an asterisk (*). Kibo then returns the
first set of product results, and provides an encoded nextCursorMark value, which you can then

http://docs.kibocommerce.com/#minimum-match-percent

use for the cursorMark in the next request. This allows Kibo to optimally page through products
without using the same amount of memory as traditional paged requests.

You can use deep paging in the storefront Search and GetProducts operations.

Deep Paging Examples

For example, you want to page through 5,000 thousand products 50 at a time in a search request
for black and sorted by product name. To optimize this request, you perform the following initial
request:

GET api/commerce/catalog/storefront/productsearch/search/?
sortBy=productName+asc&pageSize=50&query=black&cursorMark=*

The above request returns the following response:

{
 "facets": [],
 "nextCursorMark": "AoI%2fGXZlcnRpY2FsIGNvbnZlcnQgMi4wIGludGVyY2hhbmd",
 "startIndex": 0,
 "pageSize": 50,
 "pageCount": 20,
 "totalCount": 5000,
 "items": [
 {
 "productCode": "119Cfg002",
 "productSequence": 1109,
 "productUsage": "Configurable",
 "fulfillmentTypesSupported": [
 "DirectShip"
],
 "goodsType": "Physical",
 "content": {
 "productName": "1 Gallon Black paint",
 "productFullDescription": "New",
 "productShortDescription": "TEST text",
 "metaTagTitle": "1 Gallon Black paint",
 "seoFriendlyUrl": "1-gallon-black-paint",
 "productImages": []
 },
 "purchasableState": {
 "isPurchasable": false,
 "messages": [
 {
 "severity": "Info",
 "source": "ConfigurableProduct",
 "message": "Not done configuring",
 "validationType": "IncompleteProductConfiguration"
 }
]
 },

}

In the above response, Kibo returns an encoded value for nextCursorMark . In the next request,
set cursorMark to the same value you received for nextCursorMark :

GET api/commerce/catalog/storefront/productsearch/search/?
sortBy=productName+asc&pageSize=50&query=black&cursorMark=AoI%2fGXZlcnRpY2FsIGNvbnZlcnQgMi4wIGludGVyY2hhbmd

You can repeat this process of setting cursorMark to the same value you receive for
nextCursorMark to page through all your product search results. When nextCursorMark is null,
you've reached the end of the paged results.

https://apidocs.kibocommerce.com/?spec=catalog_storefront#overview

