
Search Settings API Overview
Storefront search capabilities within the Kibo Composable Commerce Platform (KCCP) are supported by Solr 8 and an
extensive set of configurable options that can be customized for the implementation. This guide explains several of the
concepts about relevancy, filtering, that should be understood before configuring search strategies.

In the the catalog/admin resource, catalog/admin/schemaDefinition contains the API calls to manage the schema and
catalog/admin/search contains the API calls to configure individual search settings. In the catalog/storefront resource,
use catalog/storefront/productsearch to make the actual Site Search and Visual Search calls. The instructions for
configuring product search settings via API are also available in the Catalog guides.

Adjustable Search Settings

The core search settings that can be adjusted are listed here, though not all are supported by every type of search. See
the appropriate catalog/admin/search resource to see which of the below settings are supported by each kind of
search.

Search Setting Description

fieldWeights
The weighted relevancy settings that you want Kibo to use. Refer to the Field

Weights section below for more information about field weights.

fieldValueBoosts and
customBoosts

The boost functions that you want Kibo to use. Refer to the Boosting Fields section

below for more information about boosting.

minimumMatchPercents

The minimum match (MM) percent is a percentage of the number of search terms

that must match or can be missing. Kibo's default MM percent is 75%. Refer to the

Minimum Match Percent section below for more information about minimum

match percents.

searchSynonymSettings

The search synonym settings that you want Kibo to use.

Search synonyms are synonyms to user search queries that you want Kibo to

match on. For example, if a user searches for blouse , you want Kibo to show all

search results that would appear if a user searched for shirt as well. In this

example, blouse and shirt are search synonyms. Refer to the Search

Synonyms section below for more information about search synonym settings.

How Solr Filters Attributes

When defining attributes in the product catalog, they are flagged to indicate whether they allow filtering and sorting.
These options enable attributes to be indexed in the search schema and used as search terms, by filtering and sorting
all catalog data based on the search terms for certain attributes that the user submitted a query for. This provides the
backbone of the Solr-based search functionality, as it determines how the queries are processed in KCCP and Solr to
return search results for the user.

Different dynamic field patterns can be used for filtering and sorting actions, and are case-sensitive.

Type Action Definition

string Filter
<dynamicField name=”*_ss” type=”string” indexed=”true” stored=”true”

multiValued=”true” docValues=”true” />

string Sort
<dynamicField name=”*_s” type=”docstring” indexed=”true” stored=”true”

docValues=”true” />

boolean

Filter

and

Sort

<dynamicField name=”*_b” type=”boolean” indexed=”true” stored=”true”

docValues=”true” />

float/number Filter
<dynamicField name=”*_fs” type=”pfloat” indexed=”true” stored=”true”

multiValued=”true”/>

float/number Sort <dynamicField name=”*_f” type=”pfloat” indexed=”true” stored=”true” />

date Filter
<dynamicField name=”*_dts” type=”pdate” indexed=”true” stored=”true”

multiValued=”true” />

date Sort <dynamicField name=”*_dt” type=”pdate” indexed=”true” stored=”true” />

Type Action Definition

Filtering and sorting attributes uses the pattern __. For example, the string tenant~brand-name would reference the
following two fields:

Facet field: tenant_brand-name_ss

Single-value sort field: tenant_brand-name_s

By default, only attributes defined in the catalog and the indexed in the search schema can be queried for as a search
term. However, _txtin can be used to insert fields into the term search without storing or indexing the field. Thus, it can
be used in the below format to perform a search for custom attributes as if it were a valid term.

Use Definition

all
<dynamicField name=”*_txtin” type=”string” indexed=”false” stored=”false”

multiValued=”true”/>

To perform searches with custom attributes, use the pattern __txtin such as in the example tenant~brand-name_txtin.

Example

This example walks through a full search case to illustrate how these patterns are used to generate the final query for
Solr. The example schema defines a “brand name” field to be used as both a default text search field and a ngram field
for the product suggest function. The schema object would look like this:

field fieldDefinition

tenant~brand-name default

tenant~brand-name ngram

Thus, the Solr schema would include the following entries that define the brand name field.

<field name="tenant_brand-name_default" type="text_lang_en" indexed="true" stored="false"/>

<field name="tenant_brand-name_ngram" type="edgytext" indexed="true" stored="false"/>
<copyField source="tenant_brand-name_txtin" dest="tenant_brand-name_default"/>
<copyField source="tenant_brand-name_txtin" dest="tenant_brand-name_ngram"/>

If a site search was performed for “mystic,” then the searchSettings object would be used to determine what fields and
weights should be used in the Solr query. In this example, the following weights are defined for the fields:

fieldName fieldDefinition weight

productName default 7

tenant~brand default 5

fieldName fieldDefinition weight

So, the resulting query would be q=mystic&qf=productname_default^7 tenant_brand-name_default^5.

Field Relevance

Relevance determines how search results are ranked and displayed to the user, and can be customized at the attribute
level to prioritize certain terms by adjusting the “weight” of each attribute. Results that match the search terms with
higher total weights will be ranked higher (towards the top of the results) when displayed on the storefront than other
results with lower total weights. For instance, if a customer searches for a blue shirt in a particular brand and the brand
attribute is weighted higher than the color attribute, then an item that matches the brand will be more relevant and
thus ranked higher in the search results than an item that is only blue.

Weighting Fields

Each searchable field in the schema can be weighted with a different value to prioritize certain fields when checking for
search term matches. If a search was being made based on brand and product name, and the product name was
weighted higher, then items that match the queried product name will be listed higher in the search results than items
that only match the queried brand. Items that match both the queried product name and brand will be ranked highest.

The fieldWeights array is a list of objects, each entry of which identifies a searchFieldName and the appropriate
weighting values either as a simple weight on the search term or as a phrase. The basic weight value raises the
relevancy score of a search result that includes this particular term, while phraseWeight raises the relevancy score of a
search result that has the exact search phrase with all terms next to each other. Note that the search field being
weighted must be indexed in the schema.

For example, the below sample would set the field for the brand attribute to a weighting of 10. These weights are
relative to the weights of the other results – KCCP does not enforce a strict scale such as 1-10. This snippet would be
part of the site search settings object included in a larger POST or PUT call to the Search Settings API as detailed in that
guide.

"siteSearchSettings": {
 "fieldWeights": [
 {
 "phraseWeight": 0,
 "searchFieldName": "tenant_brand_desc_lenient",
 "weight": 10
 },

Boosting Fields

Further adjustments can be made by boosting certain values within each attribute. Boosting further fine-tunes weights
and relevancy by adjusting the weight of a result based on the attributeʼs value relative to other possible values of the
attribute, allowing certain options to be prioritized within the same product. For instance, boosting “blue” above “red”
for the color attribute would allow blue shirts to be ranked higher in the search results than red shirts of the same brand
and design, if the user did not specify color in their query.

Boost particular values of attributes to raise their search result ranking and prioritize those values in relation to each
other, instead of changing the actual weight of the whole field which does not differentiate between values. For
instance, an attribute for color can have a number of possible values that describe the productʼs different color options.
These boosting options can be applied as the fieldValueBoost object when configuring site search settings, product
suggest settings, and listing settings.

Parameter Type Description

boostType string The type of boost being applied.

fields array A list of the fields that boosting is being applied to. Limit of 20 entries.

fieldName string
Contained in each entry of the fields array. The name of the field, validated against

the catalog attributes.

valueExpressions array

Contained in each entry of the fields array. A list of objects that define the expressions

being used to set the boosts of this field relative to its possible values. Limit of 20

entries.

value string Contained in each entry of the valueExpressions array. The value of this field.

boost integer
Contained in each entry of the valueExpressions array. The actual amount by which to

boost the weight of this value on the attribute. Must be greater than or equal to 0.

operator string

Contained in each entry of the valueExpressions array. The operator by which to

compare the value of the field against the search term. The options are: gt, gte, lt, lte,

eq, neq.

While the boost data is also documented in the Search Settings API guide, this snippet provides a quick look at what
this data looks like in those requests. This is an example that would boost the “Mystic” brand above the “Mundane”
brand.

{
 "boostType": "simple",
 "fields": [
 {
 "fieldName": "tenant~brand",
 "valueExpressions": [
 {
 "value": "mystic",
 "boost": 20,
 "operator": "eq"
 },
 {
 "value": "mundane",
 "boost": 10,
 "operator": "eq"
 }
]
 }
}

Minimum Match Percent

The minimum match (MM) percent indicates the percentage of terms in a search query that must be contained in the
search results. In order to calculate how many terms are matched, Kibo multiplies the MM value by the number of terms
in the search query and either rounds down or up depending on the MM value. The default value is 75%.

You can specify a minimum match percent using the minimumMatchPercent field.

If you have search synonyms that match on a user's search query, Kibo ignores the minimumMatchPercent value
and uses a minimum match of 100% instead. Refer to Minimum Match and Synonyms for more information.

Valid values for the MM percent are integers between 0-100, including negative integers. A positive integer indicates
how many terms are required to match, rounded down. A negative integer indicates how many terms can be missing,
rounded up.

The higher the MM percent the more narrow the product results Kibo returns.

Refer to the following table for some example outcomes of different MM percents:

MM Percent
Number of Search

Terms
Outcome

75% 5

3 terms must match

(5 * 0.75 = 3.75, rounded down to

3)

50% 5

2 terms must match

(5 * 0.5 = 2.5, rounded down to 2)

25% 5

1 term must match

(5 * 0.25 = 1.25, rounded down to

1)

-25% 5

4 terms must match

(1 term can be missing)

(5 * 0.75 = 3.75, rounded up to 4)

-50% 5

3 terms must match

(2 terms can be missing)

(5 * 0.5 = 2.5, rounded up to 3)

MM Percent
Number of Search

Terms
Outcome

Search Synonyms

You can add search synonyms to Kibo's search settings to expand Kibo's search capabilities. Search synonyms are
synonyms to user search queries to which Kibo expands the search results. For example, a user may search for boots,
but you want the search results to also include results for shoes, slippers, and pumps. You can use search synonyms to
accomplish this.

Enable Search Synonym Settings

To enable the search synonyms settings, in the search settings set expandSynonyms to True .

Synonym Definitions

Synonym definitions are individual definitions of synonyms. Synonym definitions are scoped to a particular tenant,
site, and locale code.

A synonym definition can include either a key and a list of synonyms, or just a list of synonyms. Refer to Synonym
Expansion Types for more information about using a key.

Multiple synonym definitions for a site are placed in a site's synonym definition collection. Kibo automatically adds any
synonym definitions you create to the applicable synonym definition collection. Refer to Synonym Definition
Collections for more information.

Synonym Definition Operations

You can perform the following operations on synonym definitions:

AddSynonymDefinition

DeleteSynonymDefinition

GetSynonymDefinition

GetSynonymDefinitions

UpdateSynonymDefinition

Synonym Definition Body

A synonym definition has the following body:

{
 "key": "string",
 "synonymId": "int",
 "synonyms": "string"
}

Synonym Definition Collections

Synonym definition collections are collections of multiple synonym definitions. Each site can have one synonym
definition collection. Kibo automatically adds any synonym definitions you create to the applicable synonym definition
collection.

Synonym Definition Collection Operations

You can perform the following operations on synonym definitions:

GetSynonymDefinitionCollection

UpdateSynonymDefinitionCollection

Synonym Definition Collection Body

A synonym definition collection has the following body:

{
 "localeCode": "string",
 "siteId": "int",
 "synonymDefinitions": [
 {
 "key": "string",
 "synonymId": "int",
 "synonyms": "string"
 }
],
 "tenantId": "int"
}

Synonym Expansion Types

There are two search synonym expansion types: one way and two way.

One Way

The one way expansion type includes a key and a set of synonyms to which Kibo expands the search results. This is a
one way expansion; Kibo does not expand the search results to the key or any other listed synonyms.

You are not required to provide a key. Do not provide a key for two way expansion.

{
 "localeCode": "en-us",
 "siteId": "22327",
 "synonymDefinitions": [
 {
 "key": "blouse",
 "synonymId": "1",
 "synonyms": [
 "shirt", "top", "T-shirt"
]
 }
],
 "tenantId": "18263"
}

In the above example, if a user searches for blouse, then Kibo expands the search results to include the results for shirt,
top, and T-shirt. However, if a user searches for top, Kibo does not expand the search results to include the results for
blouse, shirt, or T-shirt.

Two Way

The Two Way expansion type does not include a key, but instead only contains a list of synonyms to which Kibo
expands. This is a two way expansion; for any listed synonym, Kibo expands the search results to all other listed
synonyms.

For example, you specify the following:

{
 "localeCode": "en-us",
 "siteId": "22327",
 "synonymDefinitions": [
 {
 "synonymId": "1",
 "synonyms": [
 "shirt", "top", "T-shirt", "sweater", "blouse", "pullover"
]
 }
],
 "tenantId": "18263"
}

In the above example, if a user searches for top, then Kibo expands the search results to include the results for shirt, T-
shirt, sweater, blouse, and pullover.

Kibo only matches multi-word search terms if they are contained within quotes in the search query. If a multi-word
search term is not contained within quotes in the search query, Kibo uses each word in the search to find synonyms. For
example, if a shopper searches for blue shoes without quotes, Kibo expands both blue and shoes to any
applicable synonyms.

Boosting Synonyms

Kibo also allows you to set boost values for synonyms using the searchSynonymSettings . Boost values are
separated into the following two different parts.

Main part: The terms that the user enters in their search query. Use the mainPartBoost field to set boost

values for the main part.

Synonym part: The synonym terms to which Kibo expands the search query. Use the synonymPartBoost
field to set boost values for the synonym part.

If you set the mainPartBoost higher than the synonymPartBoost , then Kibo displays the search results that
match on a user's search terms higher in the search results. If you set the synonymPartBoost higher, then Kibo
displays the search results that match on an expanded synonym higher in the search results.

For example, you specify the following:

"searchSynonymSettings": {
 "mainPartBoost": 1.2,
 "synonymPartBoost": 1.1
}

In the above example, any results that match the user's search query terms appear higher in the search results list than
any results that match an expanded synonym.

The following are typical boost values:

mainPartBoost : 1.2

synonymPartBoost : 1.1

Another multiplier of mainPartBoost and synonymPartBoost that can be applied is phraseBoost. PhraseBoost can
further raise the relevancy of results in which the phrase is found with both words next to each other, and is set to a
default of 1.0 that will still score those results higher. The phraseBoost value can be changed when needed, allowing
more tuning if the search results are not as expected based on the data distribution.

Match On Any Term

The setting matchOnAnyTerm can be set to allow for a looser query. As detailed below, minimum match percents do
not work with synonym expansion which means that every term must exist in a document for it to be displayed as a
search result. However, matchOnAnyTerm can reduce this requirement when synonyms are in use. With
matchOnAnyTerm, a document can be returned by the search as long as at least one term exists within it.

For example:

Search Phrase: "bbq grill"

Synonym: "bbq" = "propane"

MatchOnAnyTerm: Set to either true (enabled) or false (disabled, by default)

If matchOnAnyTerm is not enabled, then only documents that contain both ("bbq" and "grill") or ("propane" and
"grill") are returned. When matchOnAnyTerm is enabled, then any document that contains ("bbq" or "grill" or
"propane") will also be returned. Relevancy is still taken into account, so the documents that contain more of the terms
or the full phrase will be ranked higher.

Minimum Match and Synonyms

When you use both a minimum match percent and a synonym definition list, Kibo uses a minimum match of 100% for
the search query and its synonyms.

Refer to the following table for some examples of this behavior:

Search

Query
Synonym Definition List Expanded Search

Gucci

shoes

"synonymDefinitions": [
 {
 "key": "shoes",
 "synonymId": "1",
 "synonyms": [
 "boots", "booties", "pumps", "heels", "sandals",

"sneakers", "flats", "loafers", "oxfords"
]
 }
]

Gucci shoes, Gucci boots, Gucci

booties, Gucci pumps,

Gucci heels, Gucci sandals, Gucci

sneakers, Gucci flats,

Gucci loafers, Gucci oxfords

Red

Shoes

"synonymDefinitions": [
 {
 "key": "shoes",
 "synonymId": "1",
 "synonyms": [
 "boots", "booties", "pumps"
]
 },
 {
 "key": "red",
 "synonymId": "2",
 "synonyms": [
 "magenta", "ruby", "pink"
]
 }
]

Red shoes, red boots, red

booties, red pumps,

magenta shoes, magenta boots,

magenta booties, magenta

pumps,

ruby shoes, ruby boots, ruby

booties, ruby pumps,

pink shoes, pink boots, pink

booties, pink pumps

Search

Query
Synonym Definition List Expanded Search

If you do not have search synonyms that match on a user's search query, Kibo uses the minimumMatchPercent
value. Refer to Minimum Match Percent for more information.

Search Tuning Rules

Kibo's search settings also include search tuning rules that allow you to promote products to the top of search results
and category pages, as well as block products from appearing in search results and category pages.

Refer to Search Tuning Rules for more information about creating and modifying search tuning rules.

Default Relevancy Weights

Kibo's search settings include the following default relevancy weights:

"siteKeywordRelevancy": {
 "productCodeWeight": 10,
 "nameWeight": 8,
 "descriptionWeight": 4,
 "keywordsWeight": 4,
 "attributesWeight": 1,
 "upcWeight": 2,
 "mpnWeight": 2,
 "categoryNamesWeight": 2
},
"sitePhraseRelevancy": {
 "nameWeight": 5,
 "descriptionWeight": 3,
 "attributeWeight": 1
}

Deep Paging

When you're paging through thousands or more of products using the Kibo API, Kibo recommends using deep paging,
which optimizes your retrieve requests. Traditional paged requests require Kibo to create an internal queue of paged
product results using a combination of pageSize and startIndex , which requires a large amount of memory and
subsequently degrades Kibo's performance.

With deep paging, on your first request you do not specify a startIndex , and instead only specify a pageSize and
initialize the cursorMark parameter using an asterisk (*). Kibo then returns the first set of product results, and
provides an encoded nextCursorMark value, which you can then use for the cursorMark in the next request. This
allows Kibo to optimally page through products without using the same amount of memory as traditional paged
requests.

You can use deep paging in the storefront Search and GetProducts operations.

Deep Paging Examples

For example, you want to page through 5,000 thousand products 50 at a time in a search request for black and sorted by
product name. To optimize this request, you perform the following initial request:

GET api/commerce/catalog/storefront/productsearch/search/?
sortBy=productName+asc&pageSize=50&query=black&cursorMark=*

The above request returns the following response:

{
 "facets": [],
 "nextCursorMark": "AoI%2fGXZlcnRpY2FsIGNvbnZlcnQgMi4wIGludGVyY2hhbmd",
 "startIndex": 0,
 "pageSize": 50,
 "pageCount": 20,
 "totalCount": 5000,
 "items": [
 {
 "productCode": "119Cfg002",
 "productSequence": 1109,
 "productUsage": "Configurable",
 "fulfillmentTypesSupported": [
 "DirectShip"
],
 "goodsType": "Physical",
 "content": {
 "productName": "1 Gallon Black paint",
 "productFullDescription": "New",
 "productShortDescription": "TEST text",
 "metaTagTitle": "1 Gallon Black paint",
 "seoFriendlyUrl": "1-gallon-black-paint",
 "productImages": []
 },
 "purchasableState": {
 "isPurchasable": false,
 "messages": [
 {
 "severity": "Info",
 "source": "ConfigurableProduct",
 "message": "Not done configuring",
 "validationType": "IncompleteProductConfiguration"
 }
]
 },

}

In the above response, Kibo returns an encoded value for nextCursorMark . In the next request, set cursorMark
to the same value you received for nextCursorMark :

GET api/commerce/catalog/storefront/productsearch/search/?
sortBy=productName+asc&pageSize=50&query=black&cursorMark=AoI%2fGXZlcnRpY2FsIGNvbnZlcnQgMi4wIGludGVyY2hhbmd

You can repeat this process of setting cursorMark to the same value you receive for nextCursorMark to page
through all your product search results. When nextCursorMark is null, you've reached the end of the paged results.

