
.NET SDK
This guide explains how to develop applications using the .NET SDK.

Before You Begin
Install the following software on your local machine:

Microsoft Visual Studio. The instructions in this topic are designed for Microsoft Visual Studio, but you can adapt

them for other .NET IDEs.

In addition to the listed software, you need access to a Dev Center Account that contains a provisioned sandbox.

Get Started
The following steps guide you through installing the .NET SDK, authenticating your project with your Kibo credentials,
and making a call to the API. Specifically, the tutorial demonstrates how to create a console application that retrieves
the number of customer accounts for a Kibo eCommerce site, teaching you the necessary concepts for then building a
fully-fledged application of your own.

Create an application in Dev Center with the appropriate behaviors:

1. Log in to Dev Center.

2. Create a new application.

3. Add the Customer Read behavior to the application. This step is necessary to give your application the

necessary permissions to read customer accounts. If you design additional functionality for your application,

such as updating an order, add the appropriate behaviors to avoid a permissions error.

4. Install the application to the sandbox of your choice.

5. Enable the application in Admin. If you decide to add additional behaviors to your application after this step, you

must reinstall the application to your sandbox and re-enable the application in Admin to apply the new

behaviors.

6. Note the application key, shared secret, tenant ID, and site ID. You can obtain the application key and shared

secret from the application details page. You can obtain the tenant ID and site ID by viewing your live site and

looking at the URL, which has the pattern tTenantID‑sSiteID.sandbox.mozu.com . You can obtain the

master catalog ID through a GetTenant API call, which also returns the tenant ID and site ID, but the master

catalog ID is not required for the API call used in this tutorial.

Create a .NET application that uses the .NET SDK:

1. Create a new project in Visual Studio.

2. Choose to develop a Console Application and click OK.

https://developer.mozu.com/login
http://docs.kibocommerce.com/help/set-up-your-system#test-your-code
http://docs.kibocommerce.com/help/get-started-with-applications#step-1-create-an-application-record
http://docs.kibocommerce.com/help/get-started-with-applications#step-4-register-behaviors
http://docs.kibocommerce.com/help/get-started-with-applications#step-5-install-the-application
http://docs.kibocommerce.com/help/get-started-with-applications#step-5-install-the-application
https://apidocs.kibocommerce.com/?spec=tenant_and_user#get-/platform/tenants/-tenantId-

3. Open the NuGet packet manager (Tools > Library Package Manager > Manage NuGet Packages for Solution).

4. Search for Mozu in the online package search box.

5. Install the Mozu.Api.SDK and the Mozu.Api.ToolKit packages, and then close out of the NuGet packet manager.

To learn about the available packages, refer to the About the Toolkits section.

6. Open the App.config file in your solution root directory for editing. This is the file where you specify the

configuration data for your application.

7. Within App.config , specify your application configuration within an appSettings block inside of the

configuration block, as shown in the following example, replacing the placeholder values with your

application-specific values (leave the startup and runtime blocks as is). You always need to specify an

application key, shared secret, and tenant ID for your application to make successful calls to the API. The site ID is

required for most API calls, but not all, and the master catalog ID is required for some API calls, but not all.

<configuration>
 <startup>
 ...
 </startup>
 <appSettings>
 <add key="ApplicationId" value="yourApplicationKey" />
 <add key="SharedSecret" value="yourSharedSecret" />
 <add key="TenantId" value="yourTenantId" />
 <add key="SiteId" value="yourSiteId" />
 <add key="MasterCatalogId" value="yourMasterCatalogId"< /// not required for this tutori
al - shown for educational purposes
 </appSettings>
 <runtime>
 ...
 </runtime>
</configuration>

Add a class that inherits from AbstractBootstrapper.cs, which loads dependency injections and leverages the Autofac
IoC container.

1. Right-click your project directory in Solution Explorer and select Add > Class.

2. Name the class Bootstrapper.cs and click OK.

3. Code the Bootstrapper.cs file so that it matches the following example, making sure to replace the

namespace value with your application name:

using Mozu.Api.ToolKit;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace yourAppName /// replace with your application name
{
 class Bootstrapper : AbstractBootstrapper
 {
 }
}

http://docs.kibocommerce.com/#about-the-toolkits-2
https://github.com/Mozu/mozu-dotnet-toolkit/blob/master/Mozu.Api.ToolKit/AbstractBootStrapper.cs
http://autofac.org/

Make a call to the API in your main program file:

1. Code your main program file to match the following example, which obtains an API context, creates a customer

account resource, and uses the GetAccountsAsync function to return the number of customer accounts on

the tenant:

using System;
using System.Configuration;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Autofac;
using Mozu.Api;
using Mozu.Api.ToolKit.Config;

namespace yourAppName /// replace with your application name
{
 class Program
 {
 private static IApiContext _apiContext { get; set; }
 private static IContainer _container { get; set; }

 static void Main(string[] args)
 {
 // generate an API context based on config data
 var apiContext = Program.GenerateApicontext();

 // create a customer account resource
 var customerAccountResource = new Mozu.Api.Resources.Commerce.Customer.Custo
merAccountResource(apiContext);

 // get the collection of customer accounts
 var customerAccountCollection = customerAccountResource.GetAccountsAsync(page
Size: 200).Result; /// note the recommended use of the async versions of functions, rather tha
n the deprecated sync versions of functions

 // log the total number of customer accounts
 Console.WriteLine("Number of Customer Accounts:");
 Console.WriteLine(customerAccountCollection.TotalCount);

 Console.ReadLine();
 }

 private static IApiContext GenerateApicontext()
 {
 _container = new Bootstrapper().Bootstrap().Container;
 var appSetting = _container.Resolve();

 var tenantId = int.Parse(appSetting.Settings["TenantId"].ToString());
 var siteId = int.Parse(appSetting.Settings["SiteId"].ToString());
 _apiContext = new ApiContext(siteId: siteId, tenantId: tenantId);
 return _apiContext;
 }
 }
}

2. Click Start to run your application. After it builds, the application logs the number of customer accounts to the

console.

About the Toolkits
NuGet Package

Name
Description

Mozu.Api.SDK

The .NET SDK package.

View the source on GitHub

Mozu.Api.ToolKit

Provides dependency injection containers and application eventing.

View the source on GitHub

Mozu.Api.WebToolKit

Provides controllers and classes for building an MVC application.

View the source on GitHub

SDK Function Reference
The Kibo .NET SDK provides dozens of built-in functions that help you interact with the API quickly and easily. To
familiarize yourself with these functions:

Use Visual Studio's autocomplete feature to discover the functions available to you. The majority of resources

(that contain functions) are located under Mozu.Api.Resources and the majority of properties that you send

to the API as JSON are located under Mozu.Api.Contracts . These objects mirror the structure of the API.

View the SDK source on GitHub, and either dig through the source files or use the repository search box to find the

function you are looking for.

Always use the asynchronous functions provided by the .NET SDK (denoted by the Async suffix). Unlike the deprecated
synchronous functions, the asynchronous functions do not have to execute sequentially.

https://github.com/Mozu/mozu-dotnet
https://github.com/Mozu/mozu-dotnet-toolkit
https://github.com/Mozu/mozu-dotnet-webtoolkit
https://github.com/Mozu/mozu-dotnet

