
Email Template Customization
Themes contain the design templates of your customer email templates. This guide explains how to create and apply
themes in your implementation (which must be done by a developer) and how to edit an existing theme (which can be
done by a non-developer, such as a marketing representative).

All out-of-the-box emails are listed in the General Settings of the Admin UI. However, some emails may not be utilized
by your implementation such as if you are an Order Management-Only implementation and do not support B2B
Commerce.

Create and Apply a Theme

While Kibo provides a default Core theme, many implementations may have customized themes or multiple versions of
themes installed. Before you can edit a theme, it must be uploaded to the Dev Center and installed on your tenant. The
steps to do so are:

1. Create a Theme

2. Prepare Your Development Environment

3. Use the Theme Generator

4. Make a Quick Change

5. Upload Your Theme Files

6. Install Your Theme in a Sandbox

7. Apply Your Theme

The sections below provide instructions for each of these actions.

Create a Theme

Themes live in the Dev Center. To upload theme files you've created or modified, you must first create a theme record in
Dev Center. To create a theme record:

1. In the Dev Center Console, click Develop > Themes.

2. Click Create Theme.

3. In the Create Theme dialog box, specify the theme Name and ID as follows:

1. Name: MyFirstTheme

2. Theme ID: MyTheme

4. Click Save. You should now see your theme in the Themes grid.

This guide does not include instructions for creating a new email template. As emails are triggered by

events within the Kibo Composable Commerce Platform (KCCP), code updates will need to be done by

developers and Kibo Engineering to support new email types.

5. Double-click your new theme to edit it.

6. Note the Application Key. You will need this value to configure the Theme Generator and Dev Center Sync tools

later in this tutorial.

Prepare Your Development Environment

Themes are designed to leverage inheritance, so all of your theme development should extend the latest Core theme.
We recommend using the Theme Generator to manage your theme assets. The Theme Generator:

Creates new themes that inherit from the latest Core theme or clones an existing theme from a Git repository to a

local directory. You can also use the generator to upgrade existing themes.

Configures your local theme directory as a Git repository.

Connects the Core theme Git repository (or any other theme Git repository) to your theme as a remote so you can

merge upstream changes.

Use The Theme Generator

This tool is a Yeoman plugin that generates the scaffolding (e.g., directory structure, reference files, and build files)
necessary to package a theme and upload it to Dev Center. Itʼs designed to augment, not overwrite, existing themes. If
you have a theme that extends the Core theme, you can safely run this tool in that directory without overwriting your
existing files. Whenever Kibo releases a Core theme upgrade, you can use this tool to merge changes from the Core
theme (or any other theme Git repository) with your theme.

For this tutorial, create a brand new theme that inherits from the latest Core theme:

1. Open a Terminal (OS X) or a Command Prompt (Windows).

2. Install the Yeoman command-line tool globally:

npm install -g yo
3. Install the Grunt command-line tool globally:

npm install -g grunt-cli
4. Install the Theme Generator globally:

npm install -g generator-mozu-theme
5. Create a new folder for your theme on your local machine and navigate to it:

mkdir your_theme && cd your_theme
6. Run the Yeoman generator inside your theme directory:

/your_theme/$ yo mozu-theme
7. If you have an old version of the tool installed, youʼll be prompted to update it. Press <Ctrl+C> to exit the

application and enter the following command: npm install -g generator-mozu-theme
8. Select Brand new theme.

9. Enter a public name for your theme.

10. (Optional) Enter a short description of your theme.

11. Enter the initial version.

12. Select Kibo eCommerce Core Theme as the base theme from which your new theme will inherit.

13. Select which version of the Core theme from which your new theme will inherit.

14. Enter your themeʼs Dev Center Application Key.

15. Enter your Developer Account login email.

16. Enter your Developer Account password.

17. Select your developer account.

You now have a blank theme based on the latest Core theme, which you can modify, build, and upload to Dev Center.
Since the Core theme Git repository is connected to this Git repository as a remote, youʼll be able to merge upstream
updates from the Core theme with your theme in the future.

Make a Quick Change

Now that you have your own copy of the latest Core theme, you can begin making modifications.

1. Open theme.json in your project's root directory for editing. This file contains the majority of your theme settings,

structured in JSON format.

2. In the about object, change the value associated with the name property from whatever you chose as a name to

Quickstart.

3. Save and close theme.json.

Your local copy of your theme now contains changes that you can upload to Dev Center.

Upload Your Theme Files

You need to build and upload your theme files to Dev Center in order to apply your theme to a site. Kibo provides build
tools that take care of this process for you. Complete the following steps to take advantage of these build tools:

1. Open a command prompt in your project's root directory.

2. Run grunt to build your project assets and upload them to Dev Center.

What does grunt do and what are the common options you can use with it?

grunt:

Checks your JSON and JavaScript for syntax and style errors

Compares your theme with the remote base theme and notifies you if updates are available for merging

Compiles your theme's JavaScript according to the ./build.js file that you either inherit or override

Uploads changed files to Dev Center into the theme specified by the Application Key you provided when

configuring the Theme Generator tool

If youʼve added new files at the root level of your theme directory, you must add each file name to the

mozusync.upload.src section of Gruntfile.js to upload them using the grunt command.

grunt build-production:

Checks your JSON and JavaScript for syntax and style errors

Compiles your theme's JavaScript according to the ./build.js file that you either inherit or override

Compress and minify the compiled JavaScript for production

Creates a .zip containing your theme files suitable for sharing or manually uploading within Dev Center (The ZIP

file you upload contains only the contents of the theme folder that have changed and not the theme folder itself.)

grunt mozusync:wipe && grunt:

Cleans up the theme in Dev Center by deleting all files and then re-uploading your theme files

grunt watch:

Listens for any changes to your theme files

If you save a change to a theme file, grunt automatically builds and uploads your theme to Dev Center.

Manually Uploading Your Theme Files to Dev Center

As an alternative to the build tools, you can manually upload a built and zipped package of your theme using the
following steps. However, Kibo recommends using the build tools in most cases.

1. In the Dev Center Console, click Develop > Themes.

2. In the Themes grid, double-click MyFirstTheme.

3. Click More > Upload.

4. Drag your zipped theme file into the Upload files dialog box.

5. When the upload is complete, click Done.

6. Click Packages. You should see the contents of your theme ZIP file.

Install Your Theme in a Sandbox

After your theme builds, install your theme to a sandbox so you can later apply the theme to a site. You only need to do
this once. After installation, your theme remains installed on the sandbox until you remove it.

1. In the theme toolbar at the top right, click Install.

2. In the Select a Tenant dialog box, select the sandbox you previously created.

3. Click OK.

Now your theme is installed in your sandbox. The next step is to apply it to a site within your sandbox.

Apply Your Theme

The Content Editor is a module in Admin that merchants use to interact with themes. You can use this to test the
functionality and appearance of your theme. To apply your theme to a site in your sandbox:

1. In the Dev Center Console, click Sandboxes.

2. In the Sandboxes grid, right-click the sandbox you installed your theme to and select View.

3. Log in to Admin.

4. Click Main > Content > Themes.

5. Click the dots on the Quickstart theme and click Apply.

Edit Email Templates

Once a theme has been installed, non-developers can customize the content. This section introduces the theme's file
directory and how to format the email template files.

Theme Structure

Once you have been given access to the theme from your developers, you will be presented with a file directory. From
the top level of the directory, there are two main areas that you will be navigating to for editing email templates.

The labels folder contains the language files used to manage text strings, which will be en-US.json (English) for the
purposes of this guide. These labels will be where you edit the actual text of the email body. Other language files may or
may not exist depending on which translations your implementation supports (note that de-DE.json may be included by
default as a placeholder). The processes documented here can be followed for any language file.

The templates folder contains subfolders for Hypr templates of KCCP's user interfaces, site pages, and emails. The
emails subfolder is where you will go to format the layout of emails and insert labels or API variables. It contains
templates such as order-confirmation.hypr (Order Confirmation), giftcard-created.hypr (Gift Card Created), and so on.

Hypr Templates

Email templates are stored and edited as Hypr code in the templates/emails folder of the theme, but they can also be
viewed in the Admin UI at Main > Content > Editor. In the Pages sidebar on the right, click the Email Templates folder
and select a template. Here the content is displayed with the formatting that would be seen by an email recipient. You
are also able to change the header settings and send test emails.

In the theme itself under templates/emails, Hypr templates use a labeling system to determine the text content and
reference KCCP APIs for variable information such as order numbers and customer names. For instance, this is the
default template for the Backorder email which you can edit for customization:

{% extends "email/email" %}

{% block body-content %}
 <dl class="mz-orderheader">
 <dt>{{ labels.backorder }}</dt>
 <dt>{{ labels.orderNo }} {{ model.orderNumber }}</dt>
 <dt>{{ labels.externalOrderId }} {{ model.order.externalId }}</dt><dd></dd>
 </dl>

 <p>{{ labels.orderWelcome }} {{ model.origin.firstName }} {{ model.origin.lastNameOrSurna
me }}!</p>

 <p>{{ labels.backorderBlob|string_format(siteContext.generalSettings.websiteName, model.or
derNumber, domainName)|safe }}</p>

 <table class="mz-ordersummary">
 <thead>
 <tr>
 <th class="mz-ordersummary-header-product">{{ labels.item }}</th>
 <th class="mz-ordersummary-header-available-on">{{ labels.availableOn }}</th>
 <th class="mz-ordersummary-header-subtotal">{{ labels.subtotal }}</th>
 </tr>
 </thead>
 <tbody>
 {% for item in model.items %}
 <tr>
 <td class="mz-ordersummary-item-product">
 {{ item.name }}
 <dl>
 <dd>{{ item.productCode }}</dd>
 </dl>
 </td>
 <td>
 {{ item.backorderReleaseDate }}
 </td>
 <td align="right">{% filter currency %} {{ item.actualPr
ice|multiply(item.quantity) }} {% endfilter %}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>

 {{ labels.backorderNote|safe }}

 {{ labels.emailClosing|string_format(siteContext.generalSettings.websiteName)|safe }}

{% endblock body-content %}

Content Formatting

While the general layout of content in the templates/emails folder is formatted with HTML, Hypr elements will process
string variables and insert data from the API. This section will explain how labels and data fields are used to build these
templates.

More technical details about Hypr can be found in the Templating System documentation as needed.

API Variables

When an email is generated, it will pull variables from the API for the particular customer, order, shipment, or other
element. These variables can be inserted anywhere into a templates/email Hypr file with the general format {{
model.API.object.field }}. However, the object may not be required if the particular variable is a top-level field in the API
model not contained within a smaller object.

The below examples are used in the Order Confirmation template referring to the Order API:

{{ model.orderNumber }}
{{ model.shopperNotes.comments }}
{{ model.billingInfo.billingContact.firstName }}

If the API object is a list, such as a set of fulfillment locations, then 0 can be used as a placeholder where the particular
entry in the list would be identified. The value will be filled in by the system when it generates the email:

{{ model.locations.0.address.address1 }}

These variables can also be used in logical decisions, such as only displaying a block of text in the Order Confirmation
email if the order type is for Curbside Delivery. In this case, the logical statement and its closing tag is enclosed by {%
%}:

{% if model.isCurbside == true %}
...
{% endif %}

While you can refer to the API documentation to view API models, it may be advised to check with developers for the
proper way to reference certain fields that are not already provided in the template for you to copy the format of.

Labels

A label is a variable with a string value. Templates use these variables because any changes to the value are reflected
across all templates where the labels is used by editing a single point of maintenance. This allows email content to
remain consistent and more easily updated, as well as supports the ability to translate a template into different
languages.

A few examples in the labels/en-US.json language file are shown below. You can edit any of these string values as well as
create new labels by using the "name":"value", format on a new line. HTML formatting is supported such as for creating
bulleted lists, underlining text, and creating links.

 "accountMissing": "Please select an Account",
 "accountName": "Account Name",
 "accountNoCredits": "You have no store credits.",
 "accountNoOrders": "You have not placed any orders.",

Once a label exists, it can be used in any file from the templates/emails folder. By plugging in a label name, its string
value will be displayed when the email is generated. The syntax for inserting a label is {{ labels.labelVariableName }}.

{{ labels.accountName }}

Labels with Variables

If you want to use a placeholder value where a variable can be inserting into the label, use the { } notation. For example,
the "milesAway" label uses a placeholder value to display the distance to a location:

"milesAway": "{0} miles away",

This label can then be inserted into an email template, using the following string_format syntax with the API variable
identified in parentheses. You can copy this format with any label and appropriate API field.

{{ labels.milesAway|string_format(location.distance) }}

Combining Labels and API Variables

The combination of HTML formatting, labels, and API variables make up the full email template. For instance, this block
within the default templates/email/order-confirmation.hypr template for the Order Confirmation email shows how to
display the address of a store. Note the inclusion of both simple labels (this particular example does not display any
placeholders) and object data.

<!--- Store Details --->
<div class="mz-store-details">
 <div>
 {{ labels.storeDetails }}
 </div>
 <div>
 <div> {{ labels.storeLocation }} : {{ model.locations.0.name }}</div>
 <div> {{ model.locations.0.address.address1 }} </div>
 <div> {{ model.locations.0.address.cityOrTown }},</div>
 <div> {{ model.locations.0.address.stateOrProvince }},</div>
 <div> {{ model.locations.0.address.postalOrZipCode }} </div>
 <div> {{ model.locations.0.phone }}</div>
 </div>
</div>

The output will look something like this:

Store Details
Store Location: Dallas Store
123 Example Road
Dallas
Texas
75201
972-000-0000

You should also now be able to look back at the earlier example of the Backorder email and see how it is building the
email, as well as know which theme files to navigate to to make any edits to the labels, data, or HTML format.

