
Customizing the BPM
You can create a custom BPM by forking the Kibo-Fulfillment-Workflows repository of your
codebase and creating a new BPM process. This BPM is then uploaded with assistance from Kibo
Professional Services, enabled through API, and executed via the Kibo Fulfiller UI. This allows you
to fine-tune your fulfillment methods, such as by:

Adding custom steps with buttons like proceed, back, and skip.
Displaying a static message on a custom step.
Changing the name or look and feel of custom steps.

Step 1: Set Up jBPM with Business Central

The jBPM Server distribution is the easiest way to start with jBPM, as the included Business Central
application is useful for authoring processes. To get up and running quickly, use the jBPM single
distribution which can be downloaded at jbpm.org. Look at the Getting Started guide to get
yourself familiar with Business Central.

By default, Business Central is available here.

Step 2: Fork the Fulfillment Workflows Repository

Forking the repository is a simple two-step process:

1. On GitHub, navigate to the Kibo Fulfillment Workflows repository.
2. In the top-right corner of the page, click Fork.

Keep Your Fork Synchronized

It's a good practice to regularly synchronize your fork with the upstream repository. To achieve
this, you'll need to use Git via the command line by following the below steps:

This documentation uses the jBPM Business Central application for authoring and
testing BPM workflows locally. Alternatively, you can use an Integrated Development
Environment (IDE) such as Eclipse which is documented at jbpm.org. Click Read
Documentation on the jBPM home page and search the referenced document for
Eclipse Developer Tools to get more details.

Additionally, since custom BPMs are implemented on a separate fork of Kibo’s
fulfillment workflows, that means that any future enhancements Kibo may add to the
default BPM will not be reflected on the fork. In this case, you will have to code the
changes into your version of the forked BPMs in order to add them to the new
fulfillment workflows.

https://www.jbpm.org/
https://www.jbpm.org/
https://www.jbpm.org/learn/gettingStartedUsingSingleZipDistribution.html
https://docs.jbpm.org/7.17.0.Final/jbpm-docs/html_single/#_wb.workbench
https://github.com/KiboSoftware/kibo-fulfillment-workflows

1. Set Up Git
2. Create a Local Clone of Your Fork
3. Configure Git to Synchronize with the Original Repository
4. Make Changes to the Fork

Set Up Git

If you haven't yet, first set up Git. Don't forget to set up authentication to GitHub from Git as well.

Create a Local Clone of Your Fork

Right now, you have a fork of the Kibo Fulfillment Workflows repository on GitHub but you don't
have the files in that repository on your computer. Let's create a clone of your fork locally on your
computer.

1. On GitHub, navigate to your fork of the repository.
2. Under the repository name, click Code and then the desired Clone or Download option.
3. To clone the repository using HTTPS, click the clipboard icon under Clone with HTTPS. To

clone the repository using an SSH key, including a certificate issued by your organization's
SSH certificate authority, click Use SSH and then click Clone URL.

4. Open Terminal.
5. Type git clone , and then paste the URL you copied earlier. It will look like this, with your

GitHub username instead of YOUR_USERNAME :

$ git clone https://github.com/YOUR_USERNAME/YOUR_FORK

6. Press Enter. Your local clone will be created.

$ git clone https://github.com/YOUR_USERNAME/YOUR_FORK
> Cloning into `YOUR_FORK`...
> remote: Counting objects: 1033, done.
> remote: Total 1033 (delta 0), reused 0 (delta 0), pack-reused 1033
> Receiving objects: 100% (1033/1033), 1.22 MiB | 173.00 KiB/s, done.
> Resolving deltas: 100% (405/405), done.

Configure Git to Synchronize with the Original Repository

When you fork a project, you can configure Git to pull changes from the original (or upstream)
repository into the local clone of your fork.

1. On GitHub, navigate to the Kibo Fulfillment Workflows repository.
2. Under the repository name, click Code and then the desired Clone or Download option. To

clone the repository using HTTPS, click the clipboard icon under Clone with HTTPS. To clone
the repository using an SSH key, including a certificate issued by your organization's SSH
certificate authority, click Use SSH and then click Clone URL.

3. Open Terminal.

https://github.com/KiboSoftware/kibo-fulfillment-workflows
https://github.com/KiboSoftware/kibo-fulfillment-workflows

4. Change directories to the location of the fork you cloned in Create a Local Clone of Your Fork.
To go to your home directory, type just cd with no other text.
To list the files and folders in your current directory, type ls .
To go into one of your listed directories, type cd your_listed_directory.
To go up one directory, type cd ..

5. Type git remote -v and press Enter. You'll see the current configured remote repository for
your fork.

$ git remote -v
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)

6. Type git remote add upstream , paste the URL you copied, and press Enter. It will look like
this:

$ git remote add upstream https://github.kibocommerce.com/KiboSoftware/kibo-fulfillment-w
orkflows.git

7. To verify the new upstream repository you've specified for your fork, type git remote -
v again. You should see the URL for your fork as origin, and the URL for the original Kibo
Fulfillment Workflows repository as upstream.

$ git remote -v
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)
> upstream https://github.kibocommerce.com/KiboSoftware/kibo-fulfillment-workflows
(fetch)
> upstream https://github.kibocommerce.com/KiboSoftware/kibo-fulfillment-workflows
 (push)

Make Changes to the Fork

You have the flexibility to make various changes to your fork, which includes creating and opening
branches. You will have to synchronize your custom fork with the upstream repository as well as
with your jBPM Business Central repository.

Creating Branches: Branches allow you to build new features or test out ideas without
putting your main project at risk.
Opening Pull Requests: If you are hoping to propose a change to the original repository,
you can send a request to Kibo to pull your fork into their repository by submitting a pull
request.

Step 3: Modify Forked Repository Files

To update your pom.xml file:

1. Modify pom.xml by changing the following elements to match your project requirements:

https://github.com/KiboSoftware/kibo-fulfillment-workflows

 <groupId>YOUR_DEVCENTER_ACCOUNT_KEY</groupId>
 <artifactId>YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_DEVCENTER_APP_NAME</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <packaging>kjar</packaging>
 <name>YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_DEVCENTER_APP_NAME</name>

2. Commit changes to your local copy of the forked repository.

$ git add pom.xml
$ git commit -m "Provide a meaningful commit message here"
$ git push origin develop

Step 4: Import Assets into Business Central

You can easily import the forked business assets project into Business Central, as it's a valid Git
repository:

1. Create a git branch named master from the default develop branch.

$ git checkout -b master
Switched to a new branch 'master'

$ git branch
 develop
* master

2. Log in to Business Central and go to Menu > Design > Projects.
3. Select Import Project from the Add Project menu and enter the filesystem location of the

project git repository within the Repository URL field. For example:

file://{filesystem location of forked repository}

4. Click Import, confirm the project to be imported, and click Ok.

5. Once the business assets project is successfully imported into Business Central, you can
begin working on it. Navigate to the project and make additions or modifications to assets
such as business processes, forms, rules, decision tables, and more.

Optional: Pick Wave Requirement

If you intend to use this custom fulfillment workflow for pick waves, then it must have a "picked"
signal component in order for shipment progression to follow your routing logic upon closing a

The assumption here is that there's no existing master branch in your forked
repository. The name master is used to align with the default branch name used
by the development jBPM instance.

Note that if attempting upload within a Docker container, a volume must be
mapped.

pick wave. This is required for compatibility with the Close Pick Wave API.

1. Include the Picked Signal
Ensure your BPMN workflow includes a signal event named "picked."

2. Enable Triggering via API
Position the signal so it can be triggered when the fulfillment service calls the Pick Wave
Close API.

3. Route to the Next Task
Once triggered, the workflow must route to the appropriate user task or fulfillment step
—either an existing or a custom task—based on the custom signal route.

4. Ensure Proper Workflow Progression
This signal-driven routing allows shipments associated with the pick wave to continue
progressing through the workflow as intended.

Step 5: Pull Custom Assets to the Fork

Updated business assets need to be pulled back to the forked project source code repository:

https://api-docs.kibocommerce.com/reference/put_commerce-pickwaves-pickwavenumber-closed

1. Go to Settings of the project within Business Central.
2. Copy the URL value from the General Settings view.
3. Go to the filesystem location of the forked and imported repository.
4. Type git remote -v and press Enter. You'll see the current configured remote repositories.

5. $ git remote -v
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)
> origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)
> upstream https://github.com/KiboSoftware/kibo-fulfillment-workflows.git (fetch)
> upstream https://github.com/KiboSoftware/kibo-fulfillment-workflows.git (push)

6. Type git remote add jbpm , and then paste the URL you copied in Step 2. Modify the value to
include wbadmin@ and press Enter. It will look like this:

$ git remote add jbpm ssh://wbadmin@localhost:8001/MySpace/YOUR_DEVCENTER_ACCOUN
T_KEY.YOUR_DEVCENTER_APP_NAME

7. To verify the new jbpm repository you've specified for your fork, type git remote -v again.
You should see the URL for the jBPM Business Central project as jbpm, the URL for your fork
as origin, and the URL for the original repository as upstream.

$ git remote -v
 > jbpm ssh://wbadmin@localhost:8001/MySpace/YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_
DEVCENTER_APP_NAME (fetch)
 > jbpm ssh://wbadmin@localhost:8001/MySpace/YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_
DEVCENTER_APP_NAME (push)
 > origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)
 > origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)
 > upstream https://github.com/KiboSoftware/kibo-fulfillment-workflows.git (fetch)
 > upstream https://github.com/KiboSoftware/kibo-fulfillment-workflows.git (push)

8. Pull or fetch your custom business assets from jBPM Business Central to your forked git
repository.

$ git checkout master
$ git pull jbpm master - when prompted enter wbadmin as password

or

$ git checkout master
$ git fetch jbpm
$ git rebase jbpm/master

9. Synchronize the develop branch of your fork with the origin repository on GitHub.

$ git checkout develop
$ git pull origin develop

10. Rebase your updated local master branch commits on the synchronized develop branch.

If you encounter issues connecting to the jBPM generated Git repository over SSH,
you can change the protocol to http within the same Business Central Settings
view for your project.

$ git checkout master
$ git rebase develop

11. Squash all dedicated jBPM Business Central changes in the develop branch of your fork.

$ git checkout develop
$ git merge --squash master

12. Add & commit the merged changes to the develop branch and then push to your fork on
GitHub.

$ git add -A
$ git commit -m "some useful comment"
$ git push origin develop

13. Reset the jBPM Business Central master branch using the updated develop branch.

$ git checkout master
$ git reset --hard develop
$ git push -f jbpm master

14. With your custom business assets now part of the forked project source tree, Maven
commands can be used to build and publish the KJAR artifact to a Maven repository without
using the standalone jBPM server.

$ mvn clean install

Step 6: Deploy Custom Assets to KIE Server

After adding assets to your project in Business Central, you can easily deploy it to a running KIE
server instance:

1. Navigate to your project and click Deploy.
2. After a few seconds, you should see the project successfully deployed.

Step 7: Interact with Deployed Assets

You can use Process Definitions and Process Instances perspectives of Business Central to
interact with your newly deployed business assets, such as processes or user tasks.

Step 8: Install Custom Workflows

Provide Kibo Professional Services with your repository. They will verify and upload your
workflows, as well as provide any further instructions needed to modify or install your BPMs.

Step 9: Enable Workflows for Location Groups

Update your location group configuration settings to use customized processes, referencing the
new containerId(s) and processId(s) by shipmentType. Some example cURL requests are listed
below.

Get all location groups for a tenant and site:

curl --request GET 'http://t123.mozu.com/api/commerce/admin/locationGroups' \
--header 'x-vol-tenant: 123' \
--header 'x-vol-site: 456' \
--header 'Authorization: Bearer *******'

Get configuration for a specific location group:

curl --request GET 'http://t123.mozu.com/api/commerce/admin/locationGroupConfiguration/2' \
--header 'x-vol-tenant: 123' \
--header 'x-vol-site: 456' \
--header 'Authorization: Bearer *******'

Set a custom BPM configuration for a location group:

curl --request PUT 'http://t123.mozu.com/api/commerce/admin/locationGroupConfiguration/2' \
--header 'x-vol-tenant: 123' \
--header 'x-vol-site: 456' \
--header 'Authorization: Bearer *******' \
--header 'Content-Type: application/json' \
--data-raw '{
 "tenantId": 123,
 "siteId": 456,
 "locationGroupId": 2,
 "locationGroupCode": "2",
 ...
 "bpmConfigurations": [
 {
 "shipmentType": "BOPIS",
 "workflowContainerId": "YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_DEVCENTER_APP_NAME"
,
 "workflowProcessId": "fulfillment.FulfillmentProcess-BOPIS"
 },
 {
 "shipmentType": "STH",
 "workflowContainerId": "YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_DEVCENTER_APP_NAME"
,
 "workflowProcessId": "fulfillment.FulfillmentProcess-STH"
 },
 {
 "shipmentType": "Transfer",
 "workflowContainerId": "YOUR_DEVCENTER_ACCOUNT_KEY.YOUR_DEVCENTER_APP_NAME"
,
 "workflowProcessId": "fulfillment.FulfillmentProcess-Transfer"
 }
],
 ...
}'

Step 10: Execute Custom Workflows in Fulfiller UI

To execute custom workflows as a fulfiller user, such as for testing the new workflow:

1. Log in to the Admin UI and select the appropriate tenant.

2. Create a new order and shipment type matching the custom workflow configuration.
3. Go to Main > Fulfiller and locate the corresponding shipment.
4. Proceed through the workflow tasks for the shipment and confirm functionality.

Step 11: Sync Custom Fork with Upstream Repository

To sync your custom forked repository with the upstream repository:

1. Open Terminal.
2. Change the current working directory to your local project.
3. Fetch the branches and their respective commits from the upstream repository. Commits to

develop will be stored in a local branch, upstream/develop .

$ git fetch upstream
 > remote: Counting objects: 8, done.
 > remote: Compressing objects: 100% (8/8), done.
 > remote: Total 8 (delta 3), reused 0 (delta 0), pack-reused 0
 > Unpacking objects: 100% (8/8), done.
 > From https://github.com/KiboSoftware/kibo-fulfillment-workflows
 > * [new branch] develop -> upstream/develop

4. Check out your fork's local develop branch.

$ git checkout develop
 > Switched to branch 'develop'

5. Merge the changes from upstream/develop into your local develop branch. This brings your
fork's develop branch into sync with the upstream repository, without losing your local
changes.

$ git merge upstream/develop
 > Merge made by the 'recursive' strategy.

6. If your local branch didn't have any unique commits, Git will instead perform a "fast-forward":

$ git merge upstream/develop
 > Updating 34e91da..16c56ad
 > Fast-forward
 > README.md | 5 +++--
 > 1 file changed, 3 insertions(+), 2 deletions(-)

Syncing your fork updates only your local copy of the repository. To update your fork
on GitHub, you must push your changes. For more information about syncing a fork,
see the GitHub documentation.

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork

