
Action Management JSON Editor
The below image demonstrates how the Action Management JSON Editor empowers users to exert
precise control over actions through JSON code.

Within Admin, the Action Management JSON Editor allows you to control actions using JSON code.
With the Action Management JSON Editor you can:

Enable or disable the functions bound to actions installed on the sandbox.
Specify settings, such as timeout and exception behavior, for individual actions.
Provide custom information to individual actions and to the application that contains the
actions.
Specify logging behaviors associated with actions.

To open the Action Management JSON Editor:

1. Log in to Dev Center.
2. View a sandbox.
3. In Admin, go to System > Customization > API Extensions.

JSON Structure

With the Action Management JSON Editor, you specify which actions you have installed to a
sandbox, the context each action applies to, and the settings an action uses in each context (i.e.,
the application key, the function you want to execute, and the custom configuration data you want
to provide the action). You also specify the custom configuration data available to all actions in
the application and the log level that actions use in the application.

The following code block and table demonstrate the options you can configure with the Action
Management JSON Editor.

{
 "actions": [
 {
 "actionId": "embedded.commerce.carts.deleteCart.before",
 "contexts": [
 {
 "context": 21074,
 "customFunctions": [
 {
 "applicationKey": "yourApplicationKey",
 "functionId": "functionName",
 "enabled": true,
 "timeoutMilliseconds": 5000,
 "exceptionBehavior": "fault",
 "logLevel": "Info",
 "configuration": {
 "yourCustomField": "value"
 }
 }
 ...
]
 }
 ...
]
 }
 ...
],
 "configurations": [
 {
 "applicationKey": "yourApplicationKey",
 "configuration": {
 "yourCustomField": "value"
 }
 }
 ...
],
 "defaultLogLevel": "Info"
}

Option Description

defaultLogLevel

Specifies which types of application logs display in Dev Center, based
on priority level. Possible values mirror Apache's log4net: All , Debug ,
Info , Warn , Error , Fatal , and Off . When deploying an API
Extensions application to production, set this value to Error to avoid
performance penalties.

actions An array of actions.

actionId
Identifies a specific action. This ID matches the naming conventions in
the assets/functions.json file.

actions[contexts] The per-site settings that apply to an individual action.

context
(Optional) The siteId for the site you want to apply the nested settings
to. You can omit this field if you want to apply the same settings to an
action across all your sites.

actions[contexts[
customFunctions]]

An array of custom functions tied to an action. Some actions can run
only one function, but other functions can run multiple functions.

applicationKey The application key of the API Extensions application.

functionId
The name of the custom function tied to the action, per the naming
conventions set in the manifest files located in the assets/src directory.

enabled
(Optional) A Boolean that controls whether the function is enabled or
disabled. The default is true .

timeoutMilliseconds
(Optional) The number of milliseconds that the function waits before
timing out. The default is 5000 milliseconds.

exceptionBehavior
(Optional) The behavior to take when an error is encountered, either
fault or continue . The default is fault .

logLevel

(Optional) Specifies which types of function-specific logs display in Dev
Center, based on priority level. Possible values mirror Apache's log4net:
All , Debug , Info , Warn , Error , Fatal , and Off . When deploying an
API Extensions application to production, set this value to Error to
avoid performance penalties.

Option Description

actions[contexts[
customFunctions[
configuration]]]

Custom function-level settings that you can create. If you create custom
settings with the same names as custom settings created at the
application level, these settings take precedence over the application-
level configurations.

yourCustomField Custom object data.

configurations
Custom settings that apply to all actions in the API Extensions
application.

applicationKey The application key of the API Extensions application.

configurations[
configuration]

Custom application-level settings that you can create. If you create
custom settings with the same names as custom settings created at the
function level, these settings are overwritten by the function-level
configurations.

yourCustomField Custom object data.

Option Description

