
The Structure of an API Extension
Application
API Extension applications contain JavaScript files that run custom functions before or after a
specific action occurs in Kibo. The available actions are organized into domains that relate to the
component they interact with. The following diagram provides a visual demonstration of this
structure. Note that while most actions run only one function, some actions can run multiple
functions.

API Extension Project Files

The project files in which you develop API Extension applications have the structure shown in the
following image. You can use the Yeoman Generator to automatically scaffold these files.

https://www.npmjs.com/package/generator-mozu-actions

assets
This folder contains the subfolders where you code your custom functions and
design your tests. When you run Grunt, all the files in the assets folder are
uploaded to your application in Dev Center.

Gruntfile.js

This file defines Grunt task configurations and loads Grunt plugins. Grunt
tasks automate the repetitive aspects of API Extensions development and are
invoked through the command line. You can add custom Grunt tasks to this
file if you wish. The default Grunt commands include:

grunt : Runs grunt build . In addition, asks for your developer account
password in order to upload your assets to Dev Center. If your tests fail,
you can append --force to the command to force the upload.
grunt build : Lints your code, bundles your dependencies, runs tests, and
creates the dist folder and functions.json file, but does not upload the
assets to Dev Center (making this command useful for development). If
your tests fail, you can append --force to the command to force the
build.
grunt test : Runs the tests associated with your action files (you can edit
these tests in the assets/test directory).
grunt reset : Deletes all assets from your project folder and from Dev
Center.
grunt w : Enables a watch that runs grunt every time you save a
change to a project file. Unlike in theme development, where you can
refresh a browser page to test most changes, setting a watch is normally
not useful for API Extensions development, where you are more likely to
test your changes across larger intervals. An exception when you might
want to set a watch is if you are using API Extensions to alter view data
for the theme.

mozu-
config.json

This file stores authentication credentials for the application, sync app, and
your Dev Center account.

package.json

This file stores npm module metadata (like the package name and version
number) and includes a list of dependencies for the application (for example,
Grunt dependencies, development tools, and any external Node.js libraries
that the application leverages).

dist
This folder contains built and optimized assets that result from the Grunt
build task.

src

This folder contains a list of domain folders. Each domain folder contains
JavaScript files that pertain to specific actions. The Grunt build task creates
optimized versions of the files in the src folder and places them in the dist
folder.

test
This folder contains JavaScript files where you can design simulations and
tests for your application. Each file corresponds to a source code file in the
src/domains folder.

functions.json
This file specifies how the custom functions in your JavaScript files (within the
src folder) map to actions for your application to implement.

domains

This folder contains the JavaScript files where you code your custom functions.
The files are named for the action they bind to and are organized by the domain
to which the action pertains. For example, the
embedded.platform.applications.install.js file, in the
platform.applications domain folder, is where you code the custom function that
binds to the action that occurs when the application is installed to a sandbox.

manifest.js
files

These files define the relationship between custom functions and the actions
they bind to. The build task autogenerates these files based on the settings you
specify in the Yeoman scaffolding tool, and then leverages the manifest files to
generate the functions.json file.

The Structure of the Action Files

The action files are the Javascript files in which you code the custom functionality that you want to
bind to actions. The naming and structure of these files follows the REST resource hierarchy.

Filename Syntax

Type.Domain.Action.Occurrence

Type Identifies the type of action.

Domain
Identifies the domain of the action, which specifies what part of the API
hierarchy the action interacts with. For example, commerce.carts or
commerce.customer .

Action
Identifies the HTTP or action that runs the custom function. For example,
updateItem .

Occurrence

Specifies whether the custom function runs before or after the HTTP or Kibo
action occurs. For example, for an HTTP action, before runs the function when
the HTTP request occurs in Kibo but before Kibo executes the request, and
after runs the function after Kibo executes the request and is ready to send the
HTTP response. Not every action includes this element.

Example

embedded.commerce.orders.price.after

This embedded action executes the custom functions associated with it after a price for an order
is set.

To see the full list of actions available in API Extensions, refer to the reference documentation.

http://docs.kibocommerce.com/help/types-of-actions
http://docs.kibocommerce.com/help/api-extensions-reference

