Custom Route Settings

Custom routing allows you to display SEO-friendly URLs on your site that map behind-the-scenes
to conventional Kibo eCommerce resources such as a product page or a search results page. With
custom routing, you gain advanced control over the URL structures on your site and can more
visibly highlight the products or categories your shoppers are interested in purchasing.

For example, a category page for women's tops from a certain designer might have a URL in Kibo
eCommerce that looks like: yourSite.com/tops/c/45 . However, for SEO reasons you may prefer
that the category page use a URL such as yourSite.com/womens/tops/designerName . With
custom routing, you can use the SEO-friendly URL and let Kibo eCommerce map it to the correct
category page.

Kibo eCommerce parses incoming URLs for your site and matches them to internal routes using
specific rules that you set in the Custom Routing JSON Editor. To open the editor, log in to Admin
and go to System > Customization > Custom Routes.

Define URL Routes

To define a custom route you have to:

Create templates to identify URL patterns for custom routing.

Specify the internal routes to send matching URLs to.

(Optional) Create mappings between URL parameters and Kibo eCommerce objects.
(Optional) Use validators to restrict which URL values result in a match.

(Optional) Choose which URLs are canonical.

(Optional) Choose the URL scheme for the route.

N o v s W N -

Verify that the order of templates in the JSON code does not cause conflicts.

Examples

The following code block shows a completed example of a custom route that you would enter into
the JSON editor at System > Customization > Custom Routes, and the subsequent sections in
this topic explain the details of the code. A productCode is always required in a custom route, but
this example shows that the productCode parameter can be mapped to the productName. This
allows the productName to be referenced in the URL template when the name and code are the
same. For more real-world examples, see the Custom Routing Examples section.

I 0 Capitalization is not important for the JSON code described in this topic.

http://docs.kibocommerce.com/#create-templates-to-identify-url-patterns-for-custom-routing
http://docs.kibocommerce.com/#specify-the-internal-routes-to-send-urls-to
http://docs.kibocommerce.com/#create-mappings-between-url-parameters-and-kibo-ecommerce-objects
http://docs.kibocommerce.com/#use-validators-to-restrict-which-url-values-result-in-a-match
http://docs.kibocommerce.com/#choose-which-urls-are-canonical
http://docs.kibocommerce.com/#choose-the-url-scheme-for-the-route
http://docs.kibocommerce.com/#verify-that-the-order-of-templates-does-not-cause-conflicts
http://docs.kibocommerce.com/#custom-routing-examples

{

"mappings": {
"productMap": {
"type": "direct",
"mappings" : {
"productName" : "ProductCode"
}
}
+
"validators": {
"colorVal": {
"type": "productAttribute",
"attributeFgn" : "color"
}
+
"routes" : [
{
"template": "home/{documentName}",
"defaults": {
"documentListName" : "pages@mozu"
}
"internalRoute": "CmsPage",
"mappings": {},
"validators": {},
"canonical": true,
"urlScheme": "https"
+
{
"template": "{productName}/p/{brand}/{attribute}",
"defaults": {},
"internalRoute": "ProductDetails",
"canonical": true,
"urlScheme": "https",
"mappings": {
"productMap" : [
"productName"
]
}
"validators": {
"colorval": [
"attribute"
]
}
}

If at any point you want to return a route to the Kibo eCommerce default, simply delete the
applicable custom routes from the JSON editor.

In addition to the routes discussed in this topic, you can also create routes to API Extension
functions.

Create Templates to Identify URL Patterns for Custom Routing

Templates allow Kibo eCommerce to identify which URLs belong to a custom route by specifying

http://docs.kibocommerce.com/#create-a-route-to-an-api-extension-function

the pattern of URL constants, variables, and segments that should match to a specific route. For
example, you may want to apply a custom route to a URL that looks like
yourSite.com/promotions/summer/july . This URL has three segments after the domain name. One
of the segments includes a constant ("promotions") and the other segments include variables. A
template that identifies this type of URL might look like the following example when you enter it
into the JSON editor:

"routes" : [

{

"template": "promotions/{season}/{month}"

}
]

Template Syntax

When creating templates, use the following syntax rules:

e Define variables in the URL as template parameters by enclosing them in braces { } .

e You can name URL parameters whatever you wish. However, within a given template, every
parameter name must be unique.

e Take advantage of the {categorySlug} , {categoryCode} , and {categoryld} parameters,
which provide automatic validation for categories in a URL.

e Use forward slashes / as delimiters for URL segments.

e Any characters that are not within braces or are not forward slashes are treated as constants
that must appear in the URL for a match to occur.

e To include more than one parameter within a set of delimiters, separate the parameters with
a constant value. For example, {categorySlug}-{designer}/{page} separates the
categorySlug and designer parameters with a hyphen.

e Use an asterisk to handle a variable number of URL segments. For example,
{categorySlug}/{*pages} .

e Make sure your templates do not conflict with the default Kibo eCommerce routes.

Examples of Templates

The following table shows a list of templates and examples of URLs that match the templates.

Template Example of matching URL
{categoryCode}/p/{productCode} bicycles/p/CAN-209
{a}-{b}/sale/{page} mens-shoes/sale/new

{categorySlug}/{brand}/{color} apparel/designer/black

http://docs.kibocommerce.com/#category-validator
http://docs.kibocommerce.com/#default-kibo-ecommerce-routes

Template Example of matching URL

new/shoes

new/shoes/sandals
new/{*pages} new/office

new/home/kitchen/silverware

etc.

0 Kibo eCommerce identifies a match for a URL parameter so long as there are
characters in the URL segment where the URL parameter is located. For example, in
the first row of the preceding table, "CAN-209" matches to the productCode
parameter, but any number of other characters would also match, such as
"bogusCodel23" . You may be wondering how you can create a match only when
certain conditions apply, such as when a URL parameter matches an existing attribute
value on your site. In a later section, you learn how to use validators to apply
constraints to the values that can match to a particular parameter.

Default Kibo eCommerce Routes

The following table lists the default routes in Kibo eCommerce. You cannot overwrite these routes
and if you create a template that conflicts with one of these routes, your template will not work, so
you should make sure to avoid a naming conflict.

Relative URL Internal Route
user/signup User Signup page
cart Cart page
user/login User Login page
logout User Logout page

Forgot Password

user/forgotpassword

page
c/{categoryCode}
or Category page
{categorySlug}/c/{categoryCode} (if slug is present)
p/{productCode}
or Product page

{productSlug}/p/{productCode} (if slug is present)

Relative URL Internal Route

p/{productCode}?vpc={productVariationCode}

or
Product Variant page
{productSlug}/p/{productCode}?vpc={productVariationCode} (if slug

is present)

home

or Home page

/

about-us About Us page
contact Contact page
location Store Locator page
myaccount My Account page
checkout/{orderld} Checkout page

] . Order Confirmation
checkout/{orderld}/confirmation

page

Specify the Internal Routes to Send URLs To

For each template, you need to specify the internal route that a matching URL should use. You
specify this route using the "internalRoute" object.

In addition, some routes require specific parameters, such as a product code, to complete the
route successfully. You specify these parameters using either the "defaults" object or by
extracting them from the URL.

The following example demonstrates how you can create an internal route from
yourSite.com/pendants to a search results page for the query, "pendant lights" .

"routes": [

{
"template" : "pendants”,
"internalRoute": "Search",
"defaults": {
"query": "pendant lights"
¥

}
]

The preceding example uses the "internalRoute" object to identify the type of internal route and
the "defaults" object to provide the value for the "query" parameter, which is a global

parameter that you can apply to all routes.

As mentioned, you can also extract the parameter values from the URL. For example, let's say you
want to create an internal route to a product details page. This type of internal route requires a
product code. The following example obtains the value of the product code from the URL instead
of from the "defaults" object:

"routes" : [

{
"template": "sports/{categorySlug}/{productCode}",
"internalRoute": "ProductDetails"

}
]

Because the URL parameter name in the template, i.e. "{productCode}" , matches the name of
the required parameter for the internal route, i.e. "ProductCode" (see the Available Internal
Routes table), Kibo eCommerce uses the value of the URL parameter to complete the internal
route. So if a URL on your site looks like yourSite.com/sports/soccer/ball-203 , Kibo eCommerce
routes the URL to the correct product details page using the product code "ball-203".

If you want to extract a value from the URL but do not want to give the URL parameter the same
name as the required parameter for the internal route, you can use a mapping.
Available Internal Routes and Corresponding Parameters

Refer to the following table for a list of the internal routes available in Kibo eCommerce and the
parameters they require. You also have access to global parameters available to all routes.

I 0 Capitalization doesn't matter when specifying either the route or the parameters.

Internal Routes and Parameters

Internal Route Required Parameters Optional Parameters

ProductDetails ProductCode vpc

Categoryld or CategoryCode

Category Page

http://docs.kibocommerce.com/#global-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters

Internal Route Required Parameters Optional Parameters

Categoryld
Search
Page
DocumentListName
SEFCIEE DocumentName
CmsList DocumentListName ListView
Cart

Refer to the following tables to learn about the required and optional route parameters. In addition
to route-specific parameters, Kibo eCommerce provides global parameters accessible to all routes.
Route-Specific Parameters

Route-Specific
Description

Parameter

Specifies the Product Code property of a product. This should be a
ProductCode

minimum of 3 characters, up to a maximum of 30.

Specifies the Variation Product Code property of a product with
vpc configurable options. This code enables you to route to a product

variant.

Specifies the numeric ID of the category or the value of the Category

Categoryld / Code property for the category.

CategoryCode Note: When creating a route, use either the Categoryld parameter or
the CategoryCode parameter, but not both.

http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/#route-specific-parameters
http://docs.kibocommerce.com/help/product-variations

Route-Specific L
Description
Parameter

Specifies at which page to start displaying page results when you do not
specify a start index.

B When you specify the Page parameter, Kibo eCommerce determines the

start index for page results by multiplying Page by the page size for
your template.
DocumentListName Specifies a document list name.

DocumentName Specifies a document name.

ListView Specifies a list view.

Global Parameters

Global
Description
Parameter

Specifies how to sort page results.

You sort by a number of different properties available in Kibo eCommerce,
such as Category ID, Product Price, etc., and provide an "asc" or "desc"

SortBy direction for ascending or descending order. For example, "sortBy:
ProductPrice asc"

This syntax matches what displays in URLs when sorting is applied to your
site: yourSite.com/products?sortBy=productprice asc .
Query Specifies the query string for searches.

Specifies at which item to start displaying page results. The default is 0,
Startindex
which corresponds to the first item in the results.

PageSize Specifies how many results to display per page.

FacetValueFilter = Specifies the facet to filter results with.

Create Mappings Between URL Parameters and Kibo
eCommerce Objects

Mappings allow you to map the values of URL parameters to other JSON variables or to Kibo

eCommerce objects such as facet values. Mappings work by adding or replacing entries in the Kibo
eCommerce route dictionary. The following types of mappings are available for use:

e Direct
e Facet
e Regex

e Use the beforeRouting Boolean for Category Mappings

To configure mappings, you create a "mappings" object at the same level as the "routes" object.
This "mappings" object contains the details of all the mappings available to your site. You also
create a "mappings" object at the same level as the "templates" object within the "routes"
object. This "mappings" object specifies the name of the mapping to use for a particular route.

categoryld , or categorySlug parameter, you must add the "beforeRouting" Boolean

0 If you want to apply a mapping to a template that includes a categoryCode ,
to the mapping.

Direct Mappings
Direct mappings reassign the value of a URL parameter to another value.

The following example demonstrates a route that reassigns the value of the "{product}" URL
parameter. For the URL yourSite.com/flowers/scarletRoses , Kibo eCommerce executes a route to
a product details page in the "flowers" category using "redRoses" as the new product code by
applying the "productMap" mapping to the parameter "product" . Note that you must enable the
"beforeRouting" property so that the mapping takes place before the route occurs.

{
"mappings": {
"productMap": {
"type": "direct",
"beforeRouting": true,
"mappings" : {
"scarletRoses" : "redRoses"
}
}
H
"routes" : [
{
"template": "{categorySlug}/{product}",
"defaults": {},
"internalRoute": "ProductDetails",
"mappings": {
"productMap": [
"product"

http://docs.kibocommerce.com/#direct-mappings
http://docs.kibocommerce.com/#facet-mappings
http://docs.kibocommerce.com/#regex-mappings
http://docs.kibocommerce.com/#use-the-beforerouting-boolean-to-apply-mappings-to-category-parameters
http://docs.kibocommerce.com/#use-the-beforerouting-boolean-to-apply-mappings-to-category-parameters
http://docs.kibocommerce.com/#use-the-beforerouting-boolean-to-apply-mappings-to-category-parameters

Facet Mappings

Facet mappings allow you to assign the value of a URL parameter to one of the following search
parameters:

e Query

e (Categoryld
e SortBy

e Startindex
e Page

e PageSize

e FacetValueFilter

Facet mappings are designed to work with Category and Search routes; they do not have practical
value if used in conjunction with the other internal routes.

The following example demonstrates a route that assigns the value of the "{color}" URL
parameter to the "facetValueFilter" search parameter. For the URL
yourSite.com/accessories/ties/red , Kibo eCommerce executes a route to a "accessories/ties"
category page using "red" as the faceting value by applying the "facetMap" mapping to the
parameter "color" . In this example, the benefit of the mapping is that you can use an SEO-
friendly URL for a faceted search results page that would otherwise require a character-heavy
query string in the URL to display a list of red ties. Note that you must enable the
"beforeRouting" property so that the mapping takes place before the route occurs.

{
"mappings": {
"facetMap": {
"type": "facetValueFilter",
"mapTo": "facetValueFilter",
"beforeRouting": true,
"facetld": "color"
}
g
"routes" : [
{
"template": "{parent-categorySlug}/{categorySlug}/{color}",
"defaults": {},
"internalRoute": "Category",
"mappings": {
"facetMap": [
"color"
]
}
}
]
}

You can also map URL parameters to facets using the "facet/d-facet" token in the template. This
syntax recognizes that the URL parameter should be mapped to a facet and doesn't require you to

http://docs.kibocommerce.com/#use-the-beforerouting-boolean-to-apply-mappings-to-category-parameters

code the mapping details. Using this syntax, the previous example looks like:

{
"routes” : [
{
"template": "{parent-categorySlug}/{categorySlug}/{tenant~color-facet}",
"defaults": {},
"internalRoute": "Category",
"mappings": {}
}
]
}
Regex Mappings

With a regex mapping, you can search for a string pattern in a URL parameter and replace it with
another string of your choosing. Optionally, you can leave the URL parameter intact, and instead
apply the new pattern to a custom key-value pair in the routeData global variable, which can later
be accessed in a Hypr template or through an API Extension application.

The following example demonstrates a regex mapping that applies the "toSpace" mapping to the
"{categorySlug}" parameter. The "toSpace" mapping searches for non-whitespace characters,
such as underscores, and replaces them with spaces. The optional field, "mapTo" , applies the
result of the replacement to the a custom key-value pair in the routeData global variable. If you
wanted to apply the replacement to the URL parameter that the mapping targets, you would omit
the "mapTo" field.

{
"mappings": {
"toSpace": {
Iltypell: IlregeXII'

"mapTo": "categoryName",
"pattern”; "\\S",
"replacement": " "
}
}!
"validators": {},
"routes": [
{
"template": "clearance/{categorySlug}/index",

"defaults": {
"documentListName": "pages@mozu"
}

"internalRoute": "CmsPage",
"toSpace": {

IIII: [

"categorySlug"

]
s
"canonical": true,
"validators": {}

http://docs.kibocommerce.com/help/theme-reference#global-variables-available-in-hypr-templates

Use the "beforeRouting" Boolean to Apply Mappings to Category Parameters

When you apply a mapping to a template that includes a category parameter, such as
categoryCode , categorylD , or categorySlug , you must include the "beforeRouting" Boolean
(set to true) in the route. Otherwise, the route uses the value of the category parameter before
the mapping has had a chance to take place. The following example demonstrates a mapping that
reassigns "coat" category parameter values to "jackets" . For such a case, the "beforeRouting"
Boolean is necessitated.

{
"mappings": {
"categoryMapping": {
"type": "direct",
"beforeRouting": true,
"mappings": {
"coats": "jackets"
}
¥
e
"routes": [
{
"template": "winter/{categoryCode}",
"internalRoute": "Category",
"mappings": {
"categoryMapping": [
"categoryCode"

Use Validators to Restrict Which URL Values Result in a Match

Validators require that URL parameters meet certain conditions before Kibo eCommerce considers
the template a match. Take the following template as an example: {categorySlug}/{attribute} .
Without a validator, a URL can have any number of values in the location of the {attribute}
parameter and still match the template. With a validator in place, Kibo eCommerce checks
whether the parameter value meets a set of specified criteria, for example, whether it
corresponds with an existing attribute defined on your site, and only matches the template when
this check is true.

You can use the following types of validators:

e Attribute
e List
e Category

e Facet

Attribute Validator

http://docs.kibocommerce.com/#attribute-validator
http://docs.kibocommerce.com/#list-validator
http://docs.kibocommerce.com/#category-validator
http://docs.kibocommerce.com/#facet-validator

Attribute validators check whether a URL parameter corresponds to an existing attribute on your
site. These validators require you to provide the administration name of an attribute in order for
Kibo eCommerce to look up the values of the attribute and determine if a match exists.

The following example demonstrates how to implement an attribute validator. Let's assume that
you have defined an attribute on your site with the administration name of "color" and that the
attribute contains the values "red", "green", and "blue" . With the validator in place, the URL
yourSite.com/products/green matches the template: Kibo eCommerce applies the "colorVal"
validator to the "{colorValue}" parameter, checks whether "green" matches any of the values of
the attribute with the administration name of "color", and finds a match. On the other hand, the
URL yourSite.com/products/purple does not match the template because "purple" is not a
defined value for the "color" attribute.

{
"validators": {
"colorVal": {
"type": "productAttribute",
"attributeFgn" : "color"
}
+
"routes" : [
"template": "products/{colorValue}",
"internalRoute": "ProductDetails",
"validators": {
"colorVal": [
"colorValue"
]
¥
}
]
}

List Validator

List validators check whether a URL parameter matches any value within a list that you define in
the JSON code.

The following example demonstrates how to implement a list validator. With the validator in place,
the URL yourSite.com/products/vacuum matches the template: Kibo eCommerce applies the
"productVal" validator to the "{productValue}" parameter, checks whether "vacuum" matches
any of the values defined in the list, and finds a match.

"validators": {
"productVal": {
"type": "stringlist",
"values" : [
"broom", "mop", "vacuum"
]
}
+

"routes" : [

{

"template": "products/{productValue}",
"internalRoute": "ProductDetails",
"validators": {
"productVal": [
"productValue"

Category Validator

Kibo eCommerce contains logic to automatically validate your category tree when you create
routes to category and product pages ("internalRoute": "Category" and "internalRoute":
"ProductDetails" , respectively). This saves you the trouble of having to explicitly add validators to
check whether the value of a URL parameter corresponds to an existing category on your site.

To take advantage of this logic, name category parameters in your template according to the
following syntax rules:

e To identify a URL parameter as a category that Kibo eCommerce should validate, use one of
the names described in the following table. During validation, Kibo eCommercechecks
whether the parameter value matches the corresponding property value of a category on

your site.

URL Parameter Name Matching Category Property

{categorySlug} SEO Friendly URL
{categoryld} Auto-generated numeric ID
{categoryCode} Category Code

e To identify a URL parameter as a parent category, use the prefix parent- . This allows you to
validate and display a category structure in a URL, such as yourSite.com/office-
supplies/pens .

e To identify a second level of parent category, use the prefix grandParent- .

e To identify additional levels of parent categories, use the prefix great- before grandParent- .

You can string together additional great- prefixes to create additional category levels.

e As an alternative to the parent/grandParent syntax, you can place a colon after the category
parameter and use the ancestors(n) token to specify parent levels, where n is the number
of parent categories the template requires.

e To identify two separate category trees within the same URL, specify a constant prefix for

one of the category trees.

The following table lists examples of templates that employ category parameters. The table also
shows examples of URLs that contain category codes, SEO-friendly names, and IDs that match the
pattern of the templates. Behind the scenes, Kibo eCommerce checks whether the values match
to existing category values on your site.

Template Example of matching URL
{categorySlug}/{product} sofas/recliner-01
{parent-categoryCode}/{categoryCode}/{product} Seating3/Sofas/recliner-01

{grandParent-categoryld}/{parent-
19/14/21/recliner-01
categoryld}/{categoryld}/{product}

{great-grandParent-categorySlug}/{grandParent-
furniture/seating/living-
categorySlug}/{parent-
room/sofas/recliner-01
categorySlug}/{categorySlug}/{product}

{great-great-grandParent-categorySlug}/{great-grandParent-
home/furniture/seating/living-
categorySlug}/{grandParent-categorySlug}/{parent-
room/sofas/recliner-01
categorySlug}/{categorySlug}/{product}

home/furniture/seating/living-
{categorySlug:ancestors(5)}/{product}

room/sofas/recliner-01

. . specials/dresses?
specials/{specials-categorySlug}?cat={parent-

cat=womens/designer-
categorySlug}/{categorySlug}

dresses

Facet Validator

Kibo eCommerce contains logic to automatically validate whether a URL parameter corresponds to
a valid facet value. To take advantage of this logic, use the following syntax for facet parameters
in your template:

{namespace~attributeName-facetValue}

If you construct a parameter using this syntax, Kibo eCommerce automatically validates whether

the facet value exists for a given attribute (which is identified by its namespace and
administration name). The following table shows an example of a template that employs a
template parameter and a URL that matches the template. Before identifying a match, Kibo
eCommerce validates whether "south-america" is a valid facet value for the "tenant~region"
attribute.

Template Example of matching URL

{categorySlug:ancestors(2)}/{tenant~region-facetValue} food/fruit/south-america

Choose Which URLs Are Canonical

Custom routing allows you to map multiple URLs to the same content. For example, the URLs
yourSite.com/shop/green-tea and yourSite.com/healthy-drinks can both link to the same
category page for green teas. While there are many benefits to having multiple paths to the same
content, search engines can penalize websites for displaying the same content on more than one
web page.

To counteract this negative effect on SEO, Kibo eCommerce uses the canonical flag to mark a
URL structure as the preferred one for search engine crawlers to index and for shoppers to see in
the URL bar after the route executes. By default, the standard Kibo eCommerce URL structure (for
example, yourSite.com/{categorySlug}/c/{categoryCode} for category pages) is marked as
canonical. However, if you want the URL structure defined by one of your templates to be
canonical instead (thereby displaying it to shoppers after the route executes and marking it to be
indexed by search engine crawlers), apply the canonical flag.

{
"routes" : [
{
"template": "shop/{categoryCode}",
"internalRoute": "Category",
"canonical" : true
}
]
}

o Non-canonical routes execute a 301 redirect to the canonical route, and any values
specified in the "defaults" object of the non-canonical route are overwritten by the
values in the "defaults" object of the canonical route. In the preceding example, if a
shopper were to type in the standard URL to a Kibo eCommerce category page
(yourSite.com/{categorySlug}/c/{categoryCode}), Kibo eCommerce would redirect
them to yourSite.com/shop/{categoryCode} .

Choose the URL Scheme for the Route

You can set the URL scheme for the route to either http or https . This allows you to set
encryption on a route generated from a non-secure request. If you do not specify this property,

the default is http .

{
"routes" : [
{
"template": "shop/{categoryCode}",
"internalRoute": "Category",
"urlScheme" : "https"
}
1
}

The scheme you set in the JSON overrides the scheme of the incoming request. For example, if an
incoming HTTP request matches a template whose "urlScheme" property is set to https , then
the route occurs as normal but changes the scheme to HTTPS.

Verify that the Order of Templates Does Not Cause Conflicts

When Kibo eCommerce searches for a routing template to match an incoming URL request, it
checks the templates in the order that the they are defined in the Custom Routing JSON Editor.
Once Kibo eCommerce finds the first match, it does not evaluate the remaining templates in the
editor to determine if there is a better match. This means that Kibo eCommerce may never
evaluate a template if a more general template precedes it in the JSON code.

The following example shows the correct way to order your templates when there is a possibility
of a match conflict. In the example, the "offers/{price}" template includes a validator that checks
whether the "{price}" parameter matches to a value in the specified list. The "offers/{new}"
template is more general and does not include a validator. If we have two incoming URLs,
yourSite.com/offers/under35 and yourSite.com/offers/desk-ornaments , the first URL matches to
the "offers/{price}" template and the second URL matches to the "offers/{new}" template.

However, what would happen if we reversed the order of the templates in the JSON editor? In this
case, a match conflict renders one of the templates useless because Kibo eCommerce would
match both URLs to the "offers/{new}" template and never evaluate the more restrictive
"offers/{price}" template.

"validators": {

"priceVal": {
"type": "stringlist",
"values" : [

"under35", "35-50", "over50"
]

}
Iy
"routes" : [
{
"template": "offers/{price}"
"internalRoute": "Category",
"validators": {
"priceVal": [
"price"
]
}
s
{
"template": "offers/{new}",
"internalRoute": "Category",
}

Create a Route to an API Extension Function

You can use the http.storefront.routes action to bind an APl Extension function to a route on your
site. This allows you to run the API Extension function when the route is requested versus having
to respond to a specific event on a page—providing you more flexibility to run functions
independently from the events used in other functions. For example, you can create an arbitrary
URL for a third-party service to POST to and have the function process the data when it is received.

0 Before completing the steps in this topic, you should be familiar with the API
Extensions framework and also with setting up custom routes:

e Configure Custom Routing

e API Extensions Help

Complete the following steps to create the route:

1. Scaffold an API Extension application that contains the http.storefront.routes action.
2. Add code to the custom function tied to the action. For example, in the

http.storefront.routes.js file:

module.exports = function(context) {
context.response.body = "Hello Custom Routing!";
context.response.end();

it

3. Note the name of the function in the storefront.manifest.js file, located in the assets/src

http://docs.kibocommerce.com/#define-url-routes
http://docs.kibocommerce.com/help/what-you-can-do-with-api-extensions

directory. The default name matches the action name, but you can change the name if you
wish. In the following example, the default function name is changed to

hello_custom_routing .

'hello_custom_routing': {
actionName:'http.storefront.routes’,
customFunction: require('./domains/storefront/http.storefront.routes’)

}
4. Build and upload the application to Dev Center.

5. Install the application to a sandbox.
6. From Admin, ensure that the http.storefront.routes action is enabled in the Action
Management JSON Editor.
7. In the Custom Routing JSON Editor, create a route to the function using:
o '"internalRoute": "Arcjs",
o "functionld": "yourFunctionName",
8. You can add mappings, validators, and any other custom route features that you wish, as

discussed in the main custom routing section.

{
"mappings": {},
"validators": {},
"routes": [
{
"template": "shop/deals",
"defaults": {},
"internalRoute": "Arcjs",
“functionld": "hello_custom_routing",
"mappings": {},
"validators": {}
}
|
}

Custom Routing Examples

View JSON sample code for the following custom routing scenarios:

e Route to a Document

e Route to a Product

¢ Route to a Document Through a Regex Mapping

e Modify the Category Slug for Routes to Specific Designer Pages
¢ Include Key-Value Pairs Within a Document Route

e Route to an APl Extension Function

Route to a Document

http://docs.kibocommerce.com/#define-url-routes
http://docs.kibocommerce.com/#route-to-a-document
http://docs.kibocommerce.com/#route-to-a-product
http://docs.kibocommerce.com/#route-to-a-document-through-a-regex-mapping
http://docs.kibocommerce.com/#modify-the-category-slug-for-routes-to-specific-designer-pages
http://docs.kibocommerce.com/#include-custom-key-value-pairs-within-a-document-route
http://docs.kibocommerce.com/#route-to-an-api-extension-function

yourSite.com/sales/may routes to the document named may within the sales@yourSite
document list.

{
"mappings": {},
"validators": {},
"routes": [
{
"template": "sales/{documentname}",
"defaults": {
"documentListName": "sales@yourSite"
}
"internalRoute": "CmsPage",
"mappings": {},
"validators": {},
}
1
}

Route to a Product

The default route to a product details page is yourSite.com/{productSlug}/p/{productCode} . If
you want to provide an alternative route to a product details page, use the following custom route
as an example:

If you want your alternative route to be indexed by search engines and to be the URL
that shoppers see on the product details page, set the canonical flag to true.

{
"mappings": {},
"validators": {},
"routes": [
{
"template": "shop/{productSlug}/{productCode}/info",
"defaults": {},
"internalRoute": "ProductDetails",
"mappings": {},
"canonical": false,
"validators": {},
}
|
}

Route to a Document Through a Regex Mapping

You can route to a document using a regex mapping, as shown in the following example, which
removes whitespace from category slugs that match a specific format and then renders a
resulting route to the correct document. A case where this may be useful is when mapping a
productName parameter to a productCode, as shown in the first example of this guide. Using a
regex allows you to strip or replace the spaces from your productName to match the productCode.

{

"mappings": {
"category-regex": {
Iltypell: IlregeXII'

"mapTo": "documentname",
”pattern": "\\S",
"replacement": ""

}
+
"validators": {},
"routes": [
{
"template": "variations/{variations-categorySlug}/index",
"defaults": {
"documentListName": "pages@mozu"
}
"internalRoute": "CmsPage",
"mappings": {
"category-regex": [
"variations-categorySlug"
]
Vo
"canonical": true,
"validators": {}
}

Modify the Category Slug for Routes to Specific Designer Pages

You can replace or modify how specific designer category URLs display, as shown in the following
example, where for specific designer pages any instance of mens in the URL category slugs is
replaced with men instead:

{

"mappings": {
"singular": {
Iltypell: IlregeXII'

"beforeRouting": true,
"pattern”: "mens",
"replacement”: "men"

}
+
"validators": {
"designers": {
"type": "stringlist",
"values": [
"designerA",
"designerB",
"designerC"
]
}
+
"routes": [
{
"template": "{designer}/{categorySlug:ancestors(5)}",
"defaults": {
"categorySlug": "shop",
"isDesignerPage": "true"
}
"internalRoute": "Category",
"mappings": {
"singular": [
"categorySlug",
"parent-categorySlug”,
"grandParent-categorySlug",
"great-grandParent-categorySlug",
"great-great-grandParent-categorySlug",
"great-great-great-grandParent-categorySlug"
]
I
"canonical": true,
"validators": {
"designer": [
"designers"
]
}
}

Include Custom Key-Value Pairs Within a Document Route

You can route to a document while including key-value pairs in the "defaults" object, which are
then accessible in the resulting page's Hypr template through use of the routeData global variable.
In the following example, the key-value pairs that you make accessible to the Hypr template are
"list": "pages@mozu" and "isOffersPage": "true" . You can then use these specific values to
modify the content that the template displays in response to the route that executes.

http://docs.kibocommerce.com/help/theme-reference#global-variables-available-in-hypr-templates

{

"mappings": {},
"validators": {},
"routes": [
{
"template": "pages/{name}/{documentListFQN}/{documentProperty-page_type_definition
Y
"defaults": {
"list": "pages@mozu”,
"isOffersPage": "true"
}
"internalRoute": "CmsPage",
"mappings": {},
"canonical": false,
"validators": {}
}
]
}

Route to an API Extension Function

You can create a route that serves as an endpoint for a custom APl Extension function to execute
on. For example, you can create a route that runs a custom function for your PayPal integrations
whenever the paypal/checkout endpoint is hit:

{
"mappings": {},
"validators": {},
"routes": [
{
"template": "paypal/checkout",
"defaults": {},
"internalRoute": "Arcjs",
"functionld": "myPayPalFunction",
"mappings": {},
"validators": {}
}

