
API Best Practices
Kibo recommends some best practices when interfacing with the Kibo Composable Commerce
Platform (KCCP) APIs to improve system efficiency and minimize potential problems such as server
load and slow performance. Your tenant should be set up to follow these guidelines for the best
KCCP experience.

This guide explains the request rate limiting that is enforced by the platform as well as additional
best practices for interacting with the APIs.

Rate Limiting

You should self-manage your own tenant to avoid overburdening the KCCP system and negatively
impacting performance for all other users. This is enforced by Kibo's rate limiting rules, which will
reject requests from any tenants that are submitting too many requests to certain API routes
within a given time frame.

In the sandbox environment, all tenants are grouped together under the same rate limits. If one
tenant reaches the limit, then requests on all sandboxes will be rejected. However, tenants are
rate limited separately in production environments. If one production tenant reaches a limit, then
the restriction will only affect that specific tenant. Rate limits for staging and pre-prod
environments also apply per tenant just like production tenants. Rate limits for sandbox, pre-prod,
performance testing, and production do not affect each other and are counted separately.

HTTP Response

The maximum limit can vary depending on the route and is distributed across your entire tenant
at any given time. When this limit is reached, subsequent requests will be rejected with an HTTP
429 "Too Many Requests" status code:

HTTP/1.1 429 Too Many Requests
Date: Fri, 3 May 2022 00:19:56 GMT
Content-Length: 0
Connection: keep-alive
Server: nginx/1.15.8
Retry-After: 60
x-vol-correlation: faac10ae0c224fa089bf6b1fe6305c5a

At this point you should wait before submitting any more requests because the system will reject
them until the time has elapsed. The time you should wait is indicated in the response header:

Response
Header

Description



Retry-After
The remaining rejection time, or the amount of seconds you should wait before
placing another request. Values will be 60, 900, 1800, 2700, or 3600 which
correspond to 1 minute, 15 minutes, 30 minutes, 45 minutes, and 60 minutes.

Response
Header

Description

Acceptable Request Rate

You can determine an acceptable rate of requests by finding the rule that best matches the API
route and dividing the rule's limit by the time period. All applications or client code that make a
request to an API route with a matching rule must self-manage their request rate to stay at or
below the limit to avoid receiving an HTTP 429 error.

For example, if a rule for an API has a limit of 100 requests per minute (RPM) and 2,000 requests
per hour (RPH) then the maximum number of requests allowed is 100 per minute and 2000 per
hour.

If your requests are being rejected by KCCP, then your application or client code must wait for the
restriction time to expire (per the Retry-After header) and then lower the rate of requests to avoid
hitting the limit again.

Minute vs. Hourly Limiting

Limits on a given rule are applied per minute and per hour. A single request to the KCCP system
will count against both the minute and hourly limit for the matching rule. For the examples below,
assume the rule is an API with limits of 100 requests per minute (RPM) and 2,000 requests per
hour (RPH).

Minute limits count the number of requests in a single minute. If 120 requests are made in 60
seconds, then the system will begin restricting requests on the 101st attempt and return HTTP 429
responses for all further requests until the wait time has expired. Once the next minute begins,
the per-minute limit is reset and requests will be accepted unless the rate limit is reached again.

Hourly limits operate on a rolling 60-minute window, which is broken down into four 15-minute
buckets. Starting from the first request, the system counts the number of requests in 15-minute
buckets. For example, if 100 requests per minute (RPM) come in for 20 minutes then the system
will reject any further requests for up to 45 minutes since the entire hourly limit was used. For
another example, if exactly 30 requests per minute (RPM) come in during the first 45 minutes of
an hour but the final 15 minutes increase to 100 RPM, then the system will reject further requests
for up to 15 minutes once the rate limit is reached. After this time expires, requests will be
accepted again unless they continue to exceed the rate limit. After being rejected once, the hourly
limit will be applied in continuous 15-minute increments until the limit is no longer exceeded
within the last 60 minutes.

Burst vs. Sustained Requests



Burst requests are allowed within the rate limits, but keep in mind that you cannot sustain the
maximum per-minute rate if the hourly rate does not allow it. 

For example, if the rule for an API has limits of 100 requests per minute (RPM) and 2,000 requests
per hour (RPH) then the system will allow bursts of up to 100 RPM until the hourly rate limit is
reached. In this example, an application or client code could send 100 RPM for up to 20 minutes
before being restricted for up to 60 minutes. Since the total hourly rate limit only supports up to
20 minutes of burst spread over the entire hour, it's important not to use the entire hourly rate
limit too quickly.

The ability to burst requests may vary by rule, so review both the minute and hourly rate limits
before choosing the request rate your application or client code will send.

Determining Your Rate Limits

View the exact rate limits for your tenants and their current statuses per API route in the Dev
Center, under Projects > Limits. This page displays one table for all sandboxes associated with
your developer account and additional tables for each production tenant. If you are currently
operating within the rate limit for a particular API route, then "OK" will be displayed in green. If you
exceed the limit and requests are currently being restricted, then "Throttled" will be displayed in
red instead.

http://docs.kibocommerce.com/help/dev-center-and-your-local-environment


If there are no rate limits applied to your developer account, then all sandbox will be "Under Limit"
and the production tenant table(s) will say "No rate limits are assigned for this tenant."

Reference the tables below for more details about the rate limits in different environments.

Non-Peak Hours

Certain hours of the day have higher limits in production to support processing jobs and updates
when the load is low. For example, requests to Catalog Admin under the
/api/commerce/catalog/admin/* route have higher limits overnight during non-peak hours and
lower limits during the daytime or peak hours.

US non-peak hours are 5:00 UTC—11:00 UTC (0:00 CDT—6:00 CDT, 23:00 CST—5:00 CST).

EU non-peak hours are 22:00 UTC—4:00 UTC (0:00 CEST—6:00 CEST, 23:00 CET—5:00 CET).

Non-peak hours are calculated in UTC so it is highly recommended to schedule any jobs in UTC
and not a local time zone. This will prevent Daylight Saving Time from moving the start and end
time.

Rate Limits by Environment

The tables in this section indicate the routes that are currently rate limited per environment.
Reference them to determine how to use the Kibo Composable Commerce Platform APIs while
staying within the rate limits.

Sandbox

Sandbox rules are applied per developer account and will count requests to all sandboxes. Rate
limits will also apply to all sandboxes under the developer account.

Route
HTTP
Methods

RPM RPH Notes

There may be limits to the physical infrastructure that may restrict the maximum
number of requests that can be sent to a given endpoint. Kibo reserves the right to
apply additional or different rate limits to ensure platform stability in the case of
unreasonable or abusive API activity.



/api/platform/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

This does not
include dev/app
authtickets as
they don’t
currently
support rate
limiting.

/api/platform/* - 500

10000
(166
average
RPM)

Excludes POST,
PUT, DELETE
rule count.

/api/commerce/catalog/admin/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

-

/api/commerce/catalog/admin/* - 500

10000
(166
average
RPM)

Excludes POST,
PUT, DELETE
rule count.

/api/commerce/inventory/v5/inventory/refresh POST 50

200
(3.33
average
RPM)

This API adds to
a shared queue
so it is limited to
avoid backing
up the queue for
all sandboxes.

/api/commerce/inventory/v5/inventory/adjust POST 50

200
(3.33
average
RPM)

This API adds to
a shared queue
so it is limited to
avoid backing
up the queue for
all sandboxes.

Route
HTTP
Methods

RPM RPH Notes



/api/commerce/inventory/* - 500

10000
(166
average
RPM)

Excludes any
more specific
rules.

/api/commerce/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

Excludes any
more specific
rules.

/api/commerce/* - 500

10000
(166
average
RPM)

Excludes POST,
PUT, DELETE
rule count and
any more
specific rules.

/api/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

Excludes any
more specific
rules.

/api/* - 500

10000
(166
average
RPM)

Excludes POST,
PUT, DELETE
rule count and
any more
specific rules.

/* - 500

10000
(166
average
RPM)

Storefront and
general catch-all
rule. Excludes
any more
specific rules.

Route
HTTP
Methods

RPM RPH Notes

Pre-Prod

Pre-Prod currently has very similar rules and rate limits as sandbox. However, pre-prod rules are
applied per tenant so one pre-prod tenant will not affect another pre-prod tenant



Route
HTTP
Methods

RPM RPH Notes

/api/platform/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

This does not include dev/app
authtickets as they don’t
currently support rate limiting.

/api/platform/* - 500

10000
(166
average
RPM)

Excludes POST, PUT, DELETE
rule count.

/api/commerce/catalog/admin/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

-

/api/commerce/catalog/admin/* - 500

10000
(166
average
RPM)

Excludes POST, PUT, DELETE
rule count.

/api/commerce/inventory/* - 500

10000
(166
average
RPM)

Excludes any more specific
rules.

/api/commerce/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM)

Excludes any more specific
rules.

/api/commerce/* - 500

10000
(166
average
RPM)

Excludes POST, PUT, DELETE
rule count and any more
specific rules.



/api/*
POST,
PUT,
DELETE

500

10000
(166
average
RPM

Excludes any more specific
rules.

/api/* - 500

10000
(166
average
RPM)

Excludes POST, PUT, DELETE
rule count and any more
specific rules.

/* - 500

10000
(166
average
RPM)

Storefront and general catch-
all rule. Excludes any more
specific rules.

Route
HTTP
Methods

RPM RPH Notes

Performance Testing

The Performance Testing environment has a very simple set of rules. When inactive, the limits are
very low to not impact any other clients actively using the environment. Please stay within the
rate limits and do not do any performance testing or a large number of requests if you are not
currently scheduled to use the performance test environment.

Route
HTTP
Methods

RPM RPH Notes

/api/* -

Default:
100 
Active:
10000

Default: 2000 (33.33
average RPM) 
Active: 600000
(10000 average
RPM)

API catch-all rule.

/* -

Default:
100 
Active:
10000

Default: 2000 (33.33
average RPM) 
Active: 600000
(10000 average
RPM)

Storefront and general catch-all rule.
Excludes any more specific rules.

Production



Production tenants are not rate limited. However, to ensure overall platform stability Kibo may
apply rate limit rules to a production tenant to limit unreasonable or abusive API activity.

Other Best Practices

Although rate limiting is important, there are additional best practices that can help improve the
overall performance of your tenant.

Use Import Export APIs and Analytic Reporting

Leverage the Import/Export APIs for any large-scale transactional data read/write activities. For
historical data, leverage the analytic reporting system. The individual REST APIs are intended to
support transactional activity and/or asynchronous data synchronization.

Use Bulk APIs

If a bulk API is available, such as for querying or updating inventory, then it is best to use that API
instead of submitting individual requests for one item at a time.

Some bulk APIs have their own restrictions about the amount of data that should be submitted
with one request. For example, the Inventory Adjust API only accepts up to 1,000 items per call
while the Inventory Refresh API can accept up to 12,000. However, Kibo recommends making
refresh calls with 3,000 items for optimal performance. These limitations are indicated in the API
documentation or API-specific context guides where applicable for a specific API.

Use the Right Service

Don't call internal APIs from your Arc actions or applications that aren't designed for it. For
example, the Catalog Storefront APIs are designed to support the heavy load of the storefront but
the Catalog Administration APIs are not. You should use the appropriate service for your situation
when interacting with their Product APIs to ensure a better response time and avoid failures.

Delay Before Retrying

If the responses are not returning the HTTP 200 OK status code (such as HTTP 500 or another error
instead), you should add some delay before attempting the request again. Consider using
exponential backoff or another strategy instead of retrying immediately.

Limit Response Data

Use the response fields to limit the amount of data returned by API calls, especially when
performing queries such as searching for products. Query-string parameters such as page and
pageSize (up to a maximum of 200 records per request) can be used to retrieve large amounts of
data in digestible chunks. These parameters are always defined in the API documentation for a call
that supports them, such as the example Get Products call.

You can also compress the response data to improve API performance when returning large

https://apidocs.kibocommerce.com/?spec=importexport#overview
http://docs.kibocommerce.com/help/reporting
https://apidocs.kibocommerce.com/#overview
http://docs.kibocommerce.com/help/api-overviews
https://apidocs.kibocommerce.com/?spec=catalog_storefront#overview
https://apidocs.kibocommerce.com/?spec=catalog_admin#overview
http://docs.kibocommerce.com/help/status-codes
https://apidocs.kibocommerce.com/?spec=catalog_admin#get-/commerce/catalog/admin/products


payloads. Kibo supports the following compression formats:

Brotli 
Gzip
Default compression

Send the Accept-Encoding HTTP header with the preferred compression type(s) to enable it for the
API response, such as Accept-Encoding: br, gzip, deflate . After receiving the response,
decompress it to access the full data.

Use Fewer Filters

Though limiting and filtering the response data is useful, it can also be harmful to implement too
much complex filter logic. When calling any API with a set of filters, take care to not include too
many conditions. While a small set of filters is useful to fine-tune the result set, using a larger
number such as 100 "AND" conditions will negatively impact the performance of the query.

Inform Kibo of Expected Traffic

If you have planned promotional activities that may result in a significant increase to server traffic
and/or API requests in a short period of time (such as television campaigns, publicity events and
sponsorships, email marketing campaigns, or widely advertised sales), Kibo recommends the
following best practices:

Do not send out a major email or text campaign to everyone in a large audience at the exact
same time. Instead, space your emails and texts out over a period of time (1-2 hours).
Send your emails and texts at a time that does not already have high traffic. For instance,
most sites see a steady increase in traffic from 7am to 11am Central, so we would
recommend that you do not send out an email campaign to several million customers at
8:30am.
Please read and understand the rest of our best practices for API processes above.

Doing the above will ensure the system can best scale on its own to meet your needs and avoid
potential problems. In the event that a large spike or increase in traffic or API requests cannot be
avoided, please notify . Include the planned promotional activities, their date/time and duration,
and the expected impact such as:

The reach of the campaign
The percentage increase of traffic expected from your site
The expected order volume increase compared to the baseline for your tenant

Support will work with the developer teams to ensure Kibo has the resources in place to support
the increase in traffic to your tenant without being surprised by unexpected system load and
negatively affecting performance. Note that scaling resources will occur only for your tenant, not

https://github.com/google/brotli
https://www.gnu.org/software/gzip/manual/


on a site-by-site or regional basis.


