
Inventory API Overview
There are several important concepts to understand before interfacing with the Inventory APIs:
best practices for handling large amounts of data, how inventory jobs are defined, and how
segmentation tags are configured via API.

This guide is a general reference for using the APIs for inventory management including best
practices, accessing job data, and how to set up granular fields and segmentation tags. See the
Real-Time Inventory Service APIs guide for details about retrieving inventory levels instead.

Inventory API Best Practices

Due to the large amounts of data associated with inventory and the potential errors or slow
performance when processing that data, there are some best practices that Kibo recommends for
managing requests and responses.

Limiting Inquiry Responses

An inquiry request without a restriction on location may return a large number of results. The API
can return up to n*100 results by default (where n = number of products in the request) but this
may not be evenly split by 100 results per product. For instance, if there are two products then
the response can include a maximum of 200 results; 50 results may be for one product while the
other product has 150. Increase the value of the limit parameter in your inquiry request to
change this setting if needed.

Sizing Adjust and Refresh Requests

Inventory Adjust and Refresh requests are placed into a queue of jobs that OMS processes one at
a time. Due to this, the best practice is to submit fewer requests with more items per call, rather
than numerous requests with a small number of items each. The Adjust API can accept up to a
maximum of 1,000 items per call. The Refresh API can accept up to a maximum of 12,000 items
per call. If these limits are reached, a Bad Request error will be returned.

Even though the Refresh API can support up to 12,000 items per call, Kibo recommends that you
send requests in batches of 3,000 items for optimal performance.

Inventory Export Settings

You can use the Inventory API to configure your settings for the inventory export process to either
S3 or FTP endpoints. There are three /create endpoints used to achieve this: a general endpoint,
an S3-specific endpoint, and an FTP-specific endpoint. You can also configure fetch files with the
Save Fetch Config API.

Note that if you are using both the user interface and the API, the "Product Code" field
in the UI maps to the upc parameter in the API data.

https://api-docs.kibocommerce.com/reference/inventory-overview
http://docs.kibocommerce.com/help/real-time-inventory
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v5/inventory
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v5/inventory/adjust
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v5/inventory/refresh
http://docs.kibocommerce.com/help/inventory-export-file
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v1/export/create
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v1/export/s3/create
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v1/export/ftp/create
https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v1/config/fetchfile

You may use any of these, but the general endpoint allows you to fine-tune your settings by
specifying the location groups and sites that those configurations should apply to when inventory
is being exported from those locations or sites. These specifications cannot be defined with the S3
and FTP specific endpoints.

Deallocating Items

Sometimes, you may be stuck with items in "Allocated" status. These are not automatically
cleared by a Refresh Inventory call, so you must make a Deallocate Inventory request. This is a
two-step process because deallocation requires you to specify which shipments contain those line
items.

1. First, make a GET Shipments query for shipments that contain the allocated item. In this
example, the item is a product variation with the code 1234.

GET /api/commerce/shipments/?filter=(items.variationProductCode=eq=1234) and shipment
Status=ne=FULFILLED&fields=shipmentNumber,orderNumber,items.lineId,items.variationPro
ductCode,items.quantity

2. Then you can use the shipment and order item IDs from the query response in the Deallocate
call:

[
 {
 "orderID": 15,
 "orderItemID": 1,
 "shipmentID": 25,
 "locationCode": "examplelocation",
 "upc": "1234",
 "quantity": 1
 }
]

Inventory Jobs

Once an inventory file has been uploaded, call the Get Job API to check the status of the inventory
upload and see when it has been successfully processed, as well as the number of items. If you
don't know the Job ID, the general Get Jobs API will return all jobs in the current queue.

https://t{tenantId}.{host}/api/commerce/inventory/v1/queue/{Job ID}

This API can be filtered to return specific search results by appending “/?”and any of the below
parameters, such as /?types=REFRESH . Multiple search parameters can be joined by the “&”
symbol. These filters and the values they support are:

Configuring these settings will determine how these files are delivered and received,
but that will not activate any exports. Contact to enable inventory imports and
exports.

https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v5/inventory/deallocate
https://apidocs.kibocommerce.com/?spec=fulfillment#get-/commerce/shipments
https://api-docs.kibocommerce.com/reference/get_commerce-inventory-v1-queue-jobid
https://api-docs.kibocommerce.com/reference/get_commerce-inventory-v1-queue

Parameters
Data
Type

Description

locationCode string The identifier of the location that the inventory job is applying to.

limit integer The maximum amount of search results that may be returned.

types string(s)
The type(s) of job being performed, such as an inventory refresh
or adjust, as either a single value or a list. See below for the full
list of supported types.

originalFilename string The original file name of the uploaded inventory data for the job.

This is the full list of supported job types. The query is case-sensitive, so the type must always be
fully capitalized.

REFRESH
ADJUST
DELETE
ALLOCATE
DEALLOCATE
FULFILL
RELEASE_SHIPMENTS
CREATE_PICK_WAVE
CLOSE_PICK_WAVE
PUT_AWAY_FILE
SHORT_PICK_ERROR
BIN_AUDIT_START
BIN_AUDIT_COMPLETION
CREATE_BIN_AUDIT
RELEASE_PENDING_ITEMS

Job Query Example

This example queries for all inventory refresh jobs at an “example” location.

https://t{tenantId}.{host}/api/commerce/inventory/v1/queue/?types=REFRESH&locationCode=ex
ample

After sending the request, the API responds with a collection of job objects as the search results.

You should always use locationCode instead of locationID when performing queries,

[
 {
 "jobID": 00000,
 "tenantID": 11111,
 "locationID": 01010,
 "type": "REFRESH",
 "added": "2020-03-13T21:01:48+0000",
 "started": "2020-03-13T21:01:48+0000",
 "finished": "2020-03-13T21:01:48+0000",
 "hasData": true,
 "itemCount": "1",
 "status": "SUCCESS",
 "success": true
 },
 {
 "jobID": 11111,
 "tenantID": 11111,
 "locationID": 01010,
 "type": "REFRESH",
 "added": "2020-03-13T19:59:58+0000",
 "started": "2020-03-13T19:59:58+0000",
 "finished": "2020-03-13T19:59:58+0000",
 "hasData": true,
 "itemCount": "1",
 "status": "SUCCESS",
 "success": true
 }
]

Granular Fields in the API

When performing the below API actions, use these fields to manage granular records if you are
using those in your inventory configuration.

Allocate Inventory and Create Order: You can specify condition and serialNumber fields at
the item level.
Deallocate Inventory: If you want to deallocate from a specific granular inventory record,
include an inventoryID for each item on the item level. The inventoryIDs can be found in
the shipment data.
Fulfill Inventory: If you want to fulfill inventory from a specific granular record, include an
inventoryID for each item on the item level. The inventoryIDs can be found in the shipment
data.
Delete Inventory: If you want to delete a specific granular record, include the field (such as
date or lotCode) in the request. The API model in the linked documentation will be updated
with these fields soon.

The optional deleteGranularRecord flag can help delete records not associated with
specific granular values. This flag should only be provided when you are not specifying

even if the response returns the ID such as in the below example.

http://docs.kibocommerce.com/help/granular-inventory-fields
https://api-docs.kibocommerce.com/reference/post_commerce-inventory-v5-inventory-allocate
https://api-docs.kibocommerce.com/reference/post_commerce-orders
https://api-docs.kibocommerce.com/reference/post_commerce-inventory-v5-inventory-deallocate
https://api-docs.kibocommerce.com/reference/post_commerce-inventory-v5-inventory-fulfill
https://api-docs.kibocommerce.com/reference/post_commerce-inventory-v5-inventory-delete

any granular fields.
If deleteGranularRecord is set to true, then only the granular record without any
granular values will be deleted. If set to false, then the request is applied at the UPC-
Location level which will be deleted along with all of its granular records.

Update Inventory Allocation (doc coming soon): Inventory allocation information is tracked at
the item level of Shipment APIs, but sometimes discrepancies like damaged inventory or
mismatched data may require reallocation. The
.../commerce/shipments/{shipmentId}/items/{itemId}/updateInventoryAllocation API can be
used to adjust granular quantity and add new granular records by updating the
inventoryAllocationInfo array.

Note that you cannot change the granular records of any item with a serial number, as
these are always a unique item with an inventory of 1 and cannot be replaced.

Get Inventory Options

When calling Get Inventory, use the below flags to fine-tune which fields are returned in the
results. The API documentation will be updated soon to add these fields to the model.

If showGranularInventory is not provided, the On Hand inventory calculation will include
Safety Stock.
If showGranularInventory is provided, then the response will include granular inventory
records but exclude the granular-levels Safety Stock, LTD, and Floor values.
If showGranularInventory and showExtraGranularProductFields are both provided, the
response will display both granular inventory fields and the granular-level Safety Stock, LTD,
and Floor values. However, Safety Stock will not be included in the calculation of On Hand
inventory.

{
 "type": "ALL",
 "items": [
 {
 "upc": "upc-1",
 "sku": null
 }
],
 "pageNum": 1,
 "pageSize": 100,
 "showGranularInventory": true,
 "showExtraGranularProductFields": true
}

Segmentation in the API

Segmentation brings more flexibility to inventory management, allowing each inventory record to

https://api-docs.kibocommerce.com/reference/post_commerce-inventory-v5-inventory

be separated into different categories to indicate that portions of its total quantity are intended
for different channels, customer groups, fulfillment methods, or other needs. This allows for:

Setting a percentage of the quantity that would be available for each category.
Setting discrete units at the location level as available for each category.

Segmentation is determined with tags, which identify the groups that inventory must be split into.
For example, tags could define how much of each inventory record is set aside for a certain sales
channel: the Kibo storefront, Walmart, or Amazon. The percentages of the inventory allotted for
each channel would add up to 100% – the Kibo storefront could have 80% of the inventory,
Amazon 10%, and Walmart 10%.

For more information about segmentation and how these configurations are reflected in the user
interface, see the general Inventory Management feature guide.

Tag Categories

You should first create a category for your tags. For example, the below would create a category
with three tags. Any number of additional tags could be added to the new category, and the
percent values (the percentage of the total quantity that should be allotted to this tag value) could
be excluded if they do not need to be enforced.

{
 "name": "Channel",
 "tenantID": 1,
 "tags": [
 {
 "tagValue": "Kibo",
 "isDefault": true,
 "percent": 50
 },
 {
 "tagValue": "Amazon",
 "isDefault": false,
 "percent": 25
 },
 {
 "tagValue": "Walmart",
 "isDefault": false,
 "percent": 25
 }
}

You can then retrieve, edit, and delete the category as necessary with additional POST (with the
same request format), GET, and DELETE calls.

Tag Values

Once a tag category exists, tags can also be managed at the individual level rather than updating
the entire category every time. However, this is still a call made to the Tag Category API – the
name of the category is just appended, followed by the tag resource. For example, the below URL

http://docs.kibocommerce.com/help/inventory-segmentation-overview

would add a tag to the Channel category that was just created:

../v1/tagCategory/Channel/tag

The tag would be defined in the request body (as with the categories, the percent is optional):

{
 "tagValue": "Ebay",
 "isDefault": false,
 "percent": 10,
}

You can then retrieve, edit, and delete the values as necessary with additional POST (with the
same request format), GET, and DELETE calls.

Tags in the Inquiry Response

If tagged inventory is being utilized for inventory segmentation, then the future inventory data will
be placed within the taggedInventory object of an inquiry. For example, this would be a full
request with tagged and future inventory:

https://apidocs.kibocommerce.com/?spec=inventory#post-/commerce/inventory/v5/inventory

[
 {
 "locationName": "Example2",
 "locationCode": "00002",
 "tenantID": 11111,
 "onHand": 0,
 "available": 0,
 "allocated": 0,
 "pending": 0,
 "upc": "InventoryTagTest",
 "blockAssignment": false,
 "ltd": 0,
 "floor": 0,
 "safetyStock": 0,
 "distance": 0,
 "directShip": true,
 "transferEnabled": false,
 "pickup": true,
 "countryCode": "US",
 "currencyID": 1,
 "retailPrice": 1.99,
 "taggedInventory": [
 {
 "onHand": 0,
 "available": 0,
 "allocated": 0,
 "pending": 0,
 "tags": {
 "HolidayItems": "HolidayTest1"
 },
 "futureInventory": [
 {
 "futureInventoryID": 3,
 "quantity": 150,
 "type": "Refresh",
 "deliveryDate": "2021-03-20T17:00:00+0000",
 "createDate": "2021-03-08T11:52:32+0000"
 }
]
 }
]
 }
]

Tags in the Create Order Request

Multiple tag names and values can be passed in the Create Order call as part of order item data.
This will allow the inventory, order routing, and fulfillment services to allocate inventory
appropriately. The values included in the inventoryTags object will be validated against existing
tags in the system, and if no tags are passed then the order item will be set to the default tag.

{
 "isTaxExempt": false,
 "email": "example@kibo.com",
 "ipAddress": "172.16.254.167",
 "type": "Offline",
 "externalId": "tags",
 "isEligibleForReturns": false,

 "isEligibleForReturns": false,
 "totalCollected": 0,
 "attributes": [],
 "shippingDiscounts": [],
 "handlingDiscounts": [],
 "handlingTotal": 0,
 "notes": [],
 "items": [
 {
 "id": "eb75a8fa9a354e66ae32ada300c9c5a1",
 "fulfillmentLocationCode": "Loc1",
 "fulfillmentMethod": "Ship",
 "lineId": 1,
 "product": {
 "fulfillmentTypesSupported": [
 "DirectShip",
 "InStorePickup"
],
 "options": [],
 "properties": [],
 "categories": [],
 "price": {
 "price": 10
 },
 "discountsRestricted": false,
 "isTaxable": true,
 "productType": "AllUsage",
 "productUsage": "Standard",
 "bundledProducts": [],
 "productCode": "sp_01",
 "name": "sp_01",
 "goodsType": "Physical",
 "isPackagedStandAlone": false,
 "stock": {
 "manageStock": true,
 "isOnBackOrder": false,
 "stockAvailable": 100,
 "aggregateInventory": 0
 },
 "measurements": {
 "height": {
 "unit": "in",
 "value": 1
 },
 "width": {
 "unit": "in",
 "value": 1
 },
 "length": {
 "unit": "in",
 "value": 1
 },
 "weight": {
 "unit": "lbs",
 "value": 1
 }
 },
 "fulfillmentStatus": "PendingFulfillment"
 },
 "quantity": 1,
 "subtotal": 10,

 "quantity": 1,
 "subtotal": 10,
 "extendedTotal": 10,
 "taxableTotal": 10,
 "discountTotal": 0,
 "discountedTotal": 10,
 "itemTaxTotal": 0,
 "shippingTaxTotal": 0,
 "shippingTotal": 0,
 "feeTotal": 0,
 "total": 10,
 "unitPrice": {
 "extendedAmount": 10,
 "listAmount": 10
 },
 "productDiscounts": [],
 "shippingDiscounts": [],
 "shippingAmountBeforeDiscountsAndAdjustments": 0,
 "weightedOrderAdjustment": 0,
 "weightedOrderDiscount": 0,
 "adjustedLineItemSubtotal": 10,
 "totalWithoutWeightedShippingAndHandling": 10,
 "weightedOrderTax": 0,
 "weightedOrderShipping": 15,
 "weightedOrderShippingDiscount": 0,
 "weightedOrderShippingManualAdjustment": 0,
 "weightedOrderShippingTax": 0,
 "weightedOrderHandlingFee": 0,
 "weightedOrderHandlingFeeTax": 0,
 "weightedOrderHandlingFeeDiscount": 0,
 "weightedOrderDuty": 0,
 "totalWithWeightedShippingAndHandling": 10,
 "weightedOrderHandlingAdjustment": 0,
 "isAssemblyRequired": false,
 "inventoryTags": [{
 "name": "Online",
 "value": "Flipkart"
 },
 {
 "name": "Offline",
 "value": "OnlinePurchase"
 }
]
 }
],
 "validationResults": [],
 "billingInfo": {
 "billingContact": {
 "id": 1000,
 "email": "example@kibo.com",
 "firstName": "anagha",
 "middleNameOrInitial": "",
 "lastNameOrSurname": "deshmukh",
 "companyOrOrganization": "Test",
 "phoneNumbers": {
 "home": "5129991111",
 "mobile": "",
 "work": ""
 },
 "address": {
 "address1": "717 N. Harwood St.",

 "address1": "717 N. Harwood St.",
 "address2": "",
 "address3": "",
 "address4": "",
 "cityOrTown": "Dallas",
 "stateOrProvince": "TX",
 "postalOrZipCode": "75201",
 "countryCode": "US",
 "addressType": "Residential",
 "isValidated": false
 }
 },
 "isSameBillingShippingAddress": false

 },
 "payments": [
 {
 "paymentType": "CreditCard",
 "paymentWorkflow": "Mozu",
 "billingInfo": {
 "paymentType": "CreditCard",
 "billingContact": {
 "email": "sam.billing@email.com",
 "firstName": "Sam",
 "middleNameOrInitial": "",
 "lastNameOrSurname": "Billing",
 "phoneNumbers": {
 "home": "1234567895",
 "mobile": "1234567895",
 "work": ""
 },
 "address": {
 "address1": "1845 Kramer Ln",
 "address2": "",
 "address3": "",
 "address4": "",
 "cityOrTown": "Austin",
 "stateOrProvince": "TX",
 "postalOrZipCode": "78758",
 "countryCode": "US",
 "addressType": "Residential",
 "isValidated": false
 }
 },
 "isSameBillingShippingAddress": false,
 "card": {
 "isUsedRecurring": false,
 "nameOnCard": "Sam Billing",
 "isCardInfoSaved": false,
 "paymentOrCardType": "VISA",
 "cardNumberPartOrMask": "4111111111111111",
 "isTokenized": true,
 "expireMonth": 1,
 "expireYear": 2023
 },
 "auditInfo": {
 "updateDate": "2018-09-17T17:54:21.027Z",
 "createDate": "2018-09-17T17:53:24.598Z",
 "updateBy": "355060a60a5e48eeb7f2fb8d92af2ba5",
 "createBy": "355060a60a5e48eeb7f2fb8d92af2ba5"

 "createBy": "355060a60a5e48eeb7f2fb8d92af2ba5"
 }
 },
 "status": "Authorized",
 "subPayments": [],
 "interactions": [
 {
 "currencyCode": "USD",
 "interactionType": "Authorization",
 "status": "Authorized",
 "paymentEntryStatus": "New",
 "isRecurring": false,
 "isManual": false,
 "gatewayTransactionId": "40018563192",
 "gatewayAuthCode": "ASQLVP",
 "gatewayAVSCodes": "Y",
 "gatewayCVV2Codes": "P",
 "gatewayResponseCode": "1",
 "gatewayResponseText": "This transaction has been approved.",
 "gatewayResponseData": [
 {
 "key": "AuthorizationRequestId",
 "value": "5642607567736184003013"
 },
 {
 "key": "AuthorizationRequestToken",
 "value": "Ahj/7wSTMeLpFwo2JFnENyzVs0ZNmDdq2bt2bZi4aMGDNgxZKNP3ock7AVGn
70OSd6QNnBx/EMmkmW6QHez7QJyZjxdIuFGxIs4gLxmU"
 },
 {
 "key": "currencyCode",
 "value": "USD"
 }
],
 "amount": 65.1,
 "interactionDate": "2018-09-17T17:54:21.098Z"
 }
],
 "isRecurring": false,
 "amountCollected": 0,
 "amountCredited": 0,
 "amountRequested": 65.1
 }
],
 "refunds": [],
 "credits": [],
 "packages": [],
 "pickups": [],
 "digitalPackages": [],
 "isDraft": false,
 "hasDraft": false,
 "isImport": true,
 "isHistoricalImport": false,
 "isUnified": true,
 "couponCodes": [],
 "invalidCoupons": [],
 "amountAvailableForRefund": 0,
 "amountRemainingForPayment": 0,
 "amountRefunded": 0,
 "readyToCapture": false,
 "isOptInForSms": false,

 "isOptInForSms": false,
 "userId": "82bb750a90d34ed1b1ddc2c534293773",
 "id": "1240f01063e4ce00014e0aa7000047f0",
 "tenantId": 18416,
 "siteId": 23245,
 "channelCode": "Online",
 "currencyCode": "USD",
 "customerInteractionType": "Unknown",
 "fulfillmentInfo": {
 "fulfillmentContact": {
 "id": 1000,
 "email": "example@kibo.com",
 "firstName": "anagha",
 "middleNameOrInitial": "",
 "lastNameOrSurname": "deshmukh",
 "companyOrOrganization": "Test",
 "phoneNumbers": {
 "home": "5129991111",
 "mobile": "",
 "work": ""
 },
 "address": {
 "address1": "717 N. Harwood St.",
 "address2": "",
 "address3": "",
 "address4": "",
 "cityOrTown": "Dallas",
 "stateOrProvince": "TX",
 "postalOrZipCode": "75201",
 "countryCode": "US",
 "addressType": "Residential",
 "isValidated": false
 }
 },
 "shippingMethodCode": "d0fb5d2e4fc047d596aaada300c05893",
 "shippingMethodName": "Flat Rate",
 "auditInfo": {
 "updateDate": "2021-09-14T12:14:46.532Z",
 "createDate": "2021-09-14T12:14:08.129Z",
 "updateBy": "355060a60a5e48eeb7f2fb8d92af2ba5",
 "createBy": "355060a60a5e48eeb7f2fb8d92af2ba5"
 }
 },
 "orderDiscounts": [],
 "suggestedDiscounts": [],
 "subtotal": 10,
 "discountedSubtotal": 10,
 "discountTotal": 0,
 "discountedTotal": 10,
 "shippingTotal": 15,
 "shippingSubTotal": 15,
 "shippingTaxTotal": 0,
 "handlingTaxTotal": 0,
 "itemTaxTotal": 0,
 "taxTotal": 0,
 "feeTotal": 0,
 "total": 10,
 "lineItemSubtotalWithOrderAdjustments": 10,
 "shippingAmountBeforeDiscountsAndAdjustments": 15,
 "lastValidationDate": "2021-09-14T12:14:42.613Z",

 "lastValidationDate": "2021-09-14T12:14:42.613Z",
 "extendedProperties": [],
 "discountThresholdMessages": [],
 "auditInfo": {
 "updateDate": "2021-09-14T12:15:03.682Z",
 "createDate": "2021-09-14T12:14:08.162Z",
 "updateBy": "355060a60a5e48eeb7f2fb8d92af2ba5",
 "createBy": "355060a60a5e48eeb7f2fb8d92af2ba5"
 }
}

Inventory Redistribution

The Inventory Redistribution API allows on-demand redistribution of inventory levels across
segmentation tags based on the allocation percentages that you defined for them. This lets you
react quickly to inventory depletion in sales channels, as this API will trigger asynchronous
redistribution at the next Refresh or Adjust update and restore the appropriate amount of
inventory to those channels again.

To do this, make a POST call to .../v1/inventory/redistribute with a list of UPCs and/or location
codes as shown in the below example. The API documentation will be updated with this endpoint
soon. The scope of the redistribution depends on the combination of information you provide:

If you provide only UPCs, then those UPCs across all locations will be distributed.
If you provide only locations, then all UPCs at those locations will be redistributed.
If you provide both UPCs and locations, then only those UPCs at those locations will be
redistributed.
If you provide an empty request, then all UPCs across all locations on your tenant will be
redistributed.

{
 "upcs": ["UPC1", "UPC2", ...],
 "locationCodes": ["Location1", "Location2", ...]
}

A successful response will return a Job Id, allowing you to check the status via the Get Job API.

If a redistribution for a UPC/Location would cause any source tag's available quantity
to decrease below zero, then the redistribution for that entire UPC/Location
combination will be skipped.

https://api-docs.kibocommerce.com/reference/inventory-overview
https://api-docs.kibocommerce.com/reference/get_commerce-inventory-v1-queue-jobid

